Awesome
<div align="center"> <a href="https://krzjoa.github.io/awesome-python-data-science/"><img width="250" height="250" src="img/py-datascience.png" alt="pyds"></a> <br> <br> <br> </div> <h1 align="center"> Awesome Python Data Science </h1> <div align="center"><a href="https://github.com/sindresorhus/awesome"> <img src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg" alt="Awesome" border="0"> </a> </div> </br>Probably the best curated list of data science software in Python
Contents
- Contents
- Machine Learning
- Deep Learning
- Automated Machine Learning
- Natural Language Processing
- Computer Audition
- Computer Vision
- Time Series
- Reinforcement Learning
- Graph Machine Learning
- Learning-to-Rank & Recommender Systems
- Probabilistic Graphical Models
- Probabilistic Methods
- Model Explanation
- Optimization
- Genetic Programming
- Feature Engineering
- Visualization
- Data Manipulation
- Deployment
- Statistics
- Distributed Computing
- Experimentation
- Data Validation
- Evaluation
- Computations
- Web Scraping
- Spatial Analysis
- Quantum Computing
- Conversion
- Contributing
- License
Machine Learning
General Purpose Machine Learning
- scikit-learn - Machine learning in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- PyCaret - An open-source, low-code machine learning library in Python. <img height="20" src="img/R_big.png" alt="R inspired lib">
- Shogun - Machine learning toolbox.
- xLearn - High Performance, Easy-to-use, and Scalable Machine Learning Package.
- cuML - RAPIDS Machine Learning Library. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
- modAL - Modular active learning framework for Python3. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- Sparkit-learn - PySpark + scikit-learn = Sparkit-learn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/spark_big.png" alt="Apache Spark based">
- mlpack - A scalable C++ machine learning library (Python bindings).
- dlib - Toolkit for making real-world machine learning and data analysis applications in C++ (Python bindings).
- MLxtend - Extension and helper modules for Python's data analysis and machine learning libraries. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- hyperlearn - 50%+ Faster, 50%+ less RAM usage, GPU support re-written Sklearn, Statsmodels. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- Reproducible Experiment Platform (REP) - Machine Learning toolbox for Humans. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- scikit-multilearn - Multi-label classification for python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- seqlearn - Sequence classification toolkit for Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- pystruct - Simple structured learning framework for Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- sklearn-expertsys - Highly interpretable classifiers for scikit learn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- RuleFit - Implementation of the rulefit. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- metric-learn - Metric learning algorithms in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- pyGAM - Generalized Additive Models in Python.
- causalml - Uplift modeling and causal inference with machine learning algorithms. <img height="20" src="img/sklearn_big.png" alt="sklearn">
Gradient Boosting
- XGBoost - Scalable, Portable, and Distributed Gradient Boosting. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
- LightGBM - A fast, distributed, high-performance gradient boosting. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
- CatBoost - An open-source gradient boosting on decision trees library. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
- ThunderGBM - Fast GBDTs and Random Forests on GPUs. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
- NGBoost - Natural Gradient Boosting for Probabilistic Prediction.
- TensorFlow Decision Forests - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. <img height="20" src="img/keras_big.png" alt="keras"> <img height="20" src="img/tf_big2.png" alt="TensorFlow">
Ensemble Methods
- ML-Ensemble - High performance ensemble learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- Stacking - Simple and useful stacking library written in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- stacked_generalization - Library for machine learning stacking generalization. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- vecstack - Python package for stacking (machine learning technique). <img height="20" src="img/sklearn_big.png" alt="sklearn">
Imbalanced Datasets
- imbalanced-learn - Module to perform under-sampling and over-sampling with various techniques. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- imbalanced-algorithms - Python-based implementations of algorithms for learning on imbalanced data. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/tf_big2.png" alt="sklearn">
Random Forests
- rpforest - A forest of random projection trees. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- sklearn-random-bits-forest - Wrapper of the Random Bits Forest program written by (Wang et al., 2016).<img height="20" src="img/sklearn_big.png" alt="sklearn">
- rgf_python - Python Wrapper of Regularized Greedy Forest. <img height="20" src="img/sklearn_big.png" alt="sklearn">
Kernel Methods
- pyFM - Factorization machines in python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- fastFM - A library for Factorization Machines. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- tffm - TensorFlow implementation of an arbitrary order Factorization Machine. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/tf_big2.png" alt="sklearn">
- liquidSVM - An implementation of SVMs.
- scikit-rvm - Relevance Vector Machine implementation using the scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- ThunderSVM - A fast SVM Library on GPUs and CPUs. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
Deep Learning
PyTorch
- PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- pytorch-lightning - PyTorch Lightning is just organized PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- ignite - High-level library to help with training neural networks in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- skorch - A scikit-learn compatible neural network library that wraps PyTorch. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- Catalyst - High-level utils for PyTorch DL & RL research. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- ChemicalX - A PyTorch-based deep learning library for drug pair scoring. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
TensorFlow
- TensorFlow - Computation using data flow graphs for scalable machine learning by Google. <img height="20" src="img/tf_big2.png" alt="sklearn">
- TensorLayer - Deep Learning and Reinforcement Learning Library for Researcher and Engineer. <img height="20" src="img/tf_big2.png" alt="sklearn">
- TFLearn - Deep learning library featuring a higher-level API for TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
- Sonnet - TensorFlow-based neural network library. <img height="20" src="img/tf_big2.png" alt="sklearn">
- tensorpack - A Neural Net Training Interface on TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
- Polyaxon - A platform that helps you build, manage and monitor deep learning models. <img height="20" src="img/tf_big2.png" alt="sklearn">
- tfdeploy - Deploy TensorFlow graphs for fast evaluation and export to TensorFlow-less environments running numpy. <img height="20" src="img/tf_big2.png" alt="sklearn">
- tensorflow-upstream - TensorFlow ROCm port. <img height="20" src="img/tf_big2.png" alt="sklearn"> <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU">
- TensorFlow Fold - Deep learning with dynamic computation graphs in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
- TensorLight - A high-level framework for TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
- Mesh TensorFlow - Model Parallelism Made Easier. <img height="20" src="img/tf_big2.png" alt="sklearn">
- Ludwig - A toolbox that allows one to train and test deep learning models without the need to write code. <img height="20" src="img/tf_big2.png" alt="sklearn">
- Keras - A high-level neural networks API running on top of TensorFlow. <img height="20" src="img/keras_big.png" alt="Keras compatible">
- keras-contrib - Keras community contributions. <img height="20" src="img/keras_big.png" alt="Keras compatible">
- Hyperas - Keras + Hyperopt: A straightforward wrapper for a convenient hyperparameter. <img height="20" src="img/keras_big.png" alt="Keras compatible">
- Elephas - Distributed Deep learning with Keras & Spark. <img height="20" src="img/keras_big.png" alt="Keras compatible">
- qkeras - A quantization deep learning library. <img height="20" src="img/keras_big.png" alt="Keras compatible">
MXNet
- MXNet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
- Gluon - A clear, concise, simple yet powerful and efficient API for deep learning (now included in MXNet). <img height="20" src="img/mxnet_big.png" alt="MXNet based">
- Xfer - Transfer Learning library for Deep Neural Networks. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
- MXNet - HIP Port of MXNet. <img height="20" src="img/mxnet_big.png" alt="MXNet based"> <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU">
JAX
- JAX - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more.
- FLAX - A neural network library for JAX that is designed for flexibility.
- Optax - A gradient processing and optimization library for JAX.
Others
- transformers - State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> <img height="20" src="img/tf_big2.png" alt="sklearn">
- Tangent - Source-to-Source Debuggable Derivatives in Pure Python.
- autograd - Efficiently computes derivatives of numpy code.
- Caffe - A fast open framework for deep learning.
- nnabla - Neural Network Libraries by Sony.
Automated Machine Learning
- auto-sklearn - An AutoML toolkit and a drop-in replacement for a scikit-learn estimator. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- Auto-PyTorch - Automatic architecture search and hyperparameter optimization for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- AutoKeras - AutoML library for deep learning. <img height="20" src="img/keras_big.png" alt="Keras compatible">
- AutoGluon - AutoML for Image, Text, Tabular, Time-Series, and MultiModal Data.
- TPOT - AutoML tool that optimizes machine learning pipelines using genetic programming. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- MLBox - A powerful Automated Machine Learning python library.
Natural Language Processing
- torchtext - Data loaders and abstractions for text and NLP. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- gluon-nlp - NLP made easy. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
- KerasNLP - Modular Natural Language Processing workflows with Keras. <img height="20" src="img/keras_big.png" alt="Keras based/compatible">
- spaCy - Industrial-Strength Natural Language Processing.
- NLTK - Modules, data sets, and tutorials supporting research and development in Natural Language Processing.
- CLTK - The Classical Language Toolkik.
- gensim - Topic Modelling for Humans.
- pyMorfologik - Python binding for <a href="https://github.com/morfologik/morfologik-stemming">Morfologik</a>.
- skift - Scikit-learn wrappers for Python fastText. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- Phonemizer - Simple text-to-phonemes converter for multiple languages.
- flair - Very simple framework for state-of-the-art NLP.
Computer Audition
- torchaudio - An audio library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- librosa - Python library for audio and music analysis.
- Yaafe - Audio features extraction.
- aubio - A library for audio and music analysis.
- Essentia - Library for audio and music analysis, description, and synthesis.
- LibXtract - A simple, portable, lightweight library of audio feature extraction functions.
- Marsyas - Music Analysis, Retrieval, and Synthesis for Audio Signals.
- muda - A library for augmenting annotated audio data.
- madmom - Python audio and music signal processing library.
Computer Vision
- torchvision - Datasets, Transforms, and Models specific to Computer Vision. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- PyTorch3D - PyTorch3D is FAIR's library of reusable components for deep learning with 3D data. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- gluon-cv - Provides implementations of the state-of-the-art deep learning models in computer vision. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
- KerasCV - Industry-strength Computer Vision workflows with Keras. <img height="20" src="img/keras_big.png" alt="MXNet based">
- OpenCV - Open Source Computer Vision Library.
- Decord - An efficient video loader for deep learning with smart shuffling that's super easy to digest.
- MMEngine - OpenMMLab Foundational Library for Training Deep Learning Models. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- scikit-image - Image Processing SciKit (Toolbox for SciPy).
- imgaug - Image augmentation for machine learning experiments.
- imgaug_extension - Additional augmentations for imgaug.
- Augmentor - Image augmentation library in Python for machine learning.
- albumentations - Fast image augmentation library and easy-to-use wrapper around other libraries.
- LAVIS - A One-stop Library for Language-Vision Intelligence.
Time Series
- sktime - A unified framework for machine learning with time series. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- skforecast - Time series forecasting with machine learning models
- darts - A python library for easy manipulation and forecasting of time series.
- statsforecast - Lightning fast forecasting with statistical and econometric models.
- mlforecast - Scalable machine learning-based time series forecasting.
- neuralforecast - Scalable machine learning-based time series forecasting.
- tslearn - Machine learning toolkit dedicated to time-series data. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- tick - Module for statistical learning, with a particular emphasis on time-dependent modeling. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- greykite - A flexible, intuitive, and fast forecasting library next.
- Prophet - Automatic Forecasting Procedure.
- PyFlux - Open source time series library for Python.
- bayesloop - Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.
- luminol - Anomaly Detection and Correlation library.
- dateutil - Powerful extensions to the standard datetime module
- maya - makes it very easy to parse a string and for changing timezones
- Chaos Genius - ML powered analytics engine for outlier/anomaly detection and root cause analysis
Reinforcement Learning
- Gymnasium - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly Gym).
- PettingZoo - An API standard for multi-agent reinforcement learning environments, with popular reference environments and related utilities.
- MAgent2 - An engine for high performance multi-agent environments with very large numbers of agents, along with a set of reference environments.
- Stable Baselines3 - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines.
- Shimmy - An API conversion tool for popular external reinforcement learning environments.
- EnvPool - C++-based high-performance parallel environment execution engine (vectorized env) for general RL environments.
- RLlib - Scalable Reinforcement Learning.
- Tianshou - An elegant PyTorch deep reinforcement learning library. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- Acme - A library of reinforcement learning components and agents.
- Catalyst-RL - PyTorch framework for RL research. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- d3rlpy - An offline deep reinforcement learning library.
- DI-engine - OpenDILab Decision AI Engine. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- TF-Agents - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="TensorFlow">
- TensorForce - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="TensorFlow">
- TRFL - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
- Dopamine - A research framework for fast prototyping of reinforcement learning algorithms.
- keras-rl - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible">
- garage - A toolkit for reproducible reinforcement learning research.
- Horizon - A platform for Applied Reinforcement Learning.
- rlpyt - Reinforcement Learning in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- cleanrl - High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features (PPO, DQN, C51, DDPG, TD3, SAC, PPG).
- Machin - A reinforcement library designed for pytorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- SKRL - Modular reinforcement learning library (on PyTorch and JAX) with support for NVIDIA Isaac Gym, Isaac Orbit and Omniverse Isaac Gym. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- Imitation - Clean PyTorch implementations of imitation and reward learning algorithms. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
Graph Machine Learning
- pytorch_geometric - Geometric Deep Learning Extension Library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- pytorch_geometric_temporal - Temporal Extension Library for PyTorch Geometric. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- PyTorch Geometric Signed Directed - A signed/directed graph neural network extension library for PyTorch Geometric. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- dgl - Python package built to ease deep learning on graph, on top of existing DL frameworks. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> <img height="20" src="img/tf_big2.png" alt="TensorFlow"> <img height="20" src="img/mxnet_big.png" alt="MXNet based">
- Spektral - Deep learning on graphs. <img height="20" src="img/keras_big.png" alt="Keras compatible">
- StellarGraph - Machine Learning on Graphs. <img height="20" src="img/tf_big2.png" alt="TensorFlow"> <img height="20" src="img/keras_big.png" alt="Keras compatible">
- Graph Nets - Build Graph Nets in Tensorflow. <img height="20" src="img/tf_big2.png" alt="TensorFlow">
- TensorFlow GNN - A library to build Graph Neural Networks on the TensorFlow platform. <img height="20" src="img/tf_big2.png" alt="TensorFlow">
- Auto Graph Learning -An autoML framework & toolkit for machine learning on graphs.
- PyTorch-BigGraph - Generate embeddings from large-scale graph-structured data. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- Auto Graph Learning - An autoML framework & toolkit for machine learning on graphs.
- Karate Club - An unsupervised machine learning library for graph-structured data.
- Little Ball of Fur - A library for sampling graph structured data.
- GreatX - A graph reliability toolbox based on PyTorch and PyTorch Geometric (PyG). <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- Jraph - A Graph Neural Network Library in Jax.
Learning-to-Rank & Recommender Systems
- LightFM - A Python implementation of LightFM, a hybrid recommendation algorithm.
- Spotlight - Deep recommender models using PyTorch.
- Surprise - A Python scikit for building and analyzing recommender systems.
- RecBole - A unified, comprehensive and efficient recommendation library. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- allRank - allRank is a framework for training learning-to-rank neural models based on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- TensorFlow Recommenders - A library for building recommender system models using TensorFlow. <img height="20" src="img/tf_big2.png" alt="TensorFlow"> <img height="20" src="img/keras_big.png" alt="Keras compatible">
- TensorFlow Ranking - Learning to Rank in TensorFlow. <img height="20" src="img/tf_big2.png" alt="TensorFlow">
Probabilistic Graphical Models
- pomegranate - Probabilistic and graphical models for Python. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- pgmpy - A python library for working with Probabilistic Graphical Models.
- pyAgrum - A GRaphical Universal Modeler.
Probabilistic Methods
- pyro - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- PyMC - Bayesian Stochastic Modelling in Python.
- ZhuSuan - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
- GPflow - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
- InferPy - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn">
- PyStan - Bayesian inference using the No-U-Turn sampler (Python interface).
- sklearn-bayes - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- skpro - Supervised domain-agnostic prediction framework for probabilistic modelling by The Alan Turing Institute. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- PyVarInf - Bayesian Deep Learning methods with Variational Inference for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- emcee - The Python ensemble sampling toolkit for affine-invariant MCMC.
- hsmmlearn - A library for hidden semi-Markov models with explicit durations.
- pyhsmm - Bayesian inference in HSMMs and HMMs.
- GPyTorch - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- sklearn-crfsuite - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn">
Model Explanation
- dalex - moDel Agnostic Language for Exploration and explanation. <img height="20" src="img/sklearn_big.png" alt="sklearn"><img height="20" src="img/R_big.png" alt="R inspired/ported lib">
- Shapley - A data-driven framework to quantify the value of classifiers in a machine learning ensemble.
- Alibi - Algorithms for monitoring and explaining machine learning models.
- anchor - Code for "High-Precision Model-Agnostic Explanations" paper.
- aequitas - Bias and Fairness Audit Toolkit.
- Contrastive Explanation - Contrastive Explanation (Foil Trees). <img height="20" src="img/sklearn_big.png" alt="sklearn">
- yellowbrick - Visual analysis and diagnostic tools to facilitate machine learning model selection. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- scikit-plot - An intuitive library to add plotting functionality to scikit-learn objects. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- shap - A unified approach to explain the output of any machine learning model. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- ELI5 - A library for debugging/inspecting machine learning classifiers and explaining their predictions.
- Lime - Explaining the predictions of any machine learning classifier. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- FairML - FairML is a python toolbox auditing the machine learning models for bias. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.
- PDPbox - Partial dependence plot toolbox.
- PyCEbox - Python Individual Conditional Expectation Plot Toolbox.
- Skater - Python Library for Model Interpretation.
- model-analysis - Model analysis tools for TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
- themis-ml - A library that implements fairness-aware machine learning algorithms. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- AI Explainability 360 - Interpretability and explainability of data and machine learning models.
- Auralisation - Auralisation of learned features in CNN (for audio).
- CapsNet-Visualization - A visualization of the CapsNet layers to better understand how it works.
- lucid - A collection of infrastructure and tools for research in neural network interpretability.
- Netron - Visualizer for deep learning and machine learning models (no Python code, but visualizes models from most Python Deep Learning frameworks).
- FlashLight - Visualization Tool for your NeuralNetwork.
- tensorboard-pytorch - Tensorboard for PyTorch (and chainer, mxnet, numpy, ...).
Genetic Programming
- gplearn - Genetic Programming in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- PyGAD - Genetic Algorithm in Python. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> <img height="20" src="img/keras_big.png" alt="keras">
- DEAP - Distributed Evolutionary Algorithms in Python.
- karoo_gp - A Genetic Programming platform for Python with GPU support. <img height="20" src="img/tf_big2.png" alt="sklearn">
- monkeys - A strongly-typed genetic programming framework for Python.
- sklearn-genetic - Genetic feature selection module for scikit-learn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
<a name="opt"></a>
Optimization
- Optuna - A hyperparameter optimization framework.
- pymoo - Multi-objective Optimization in Python.
- pycma - Python implementation of CMA-ES.
- Spearmint - Bayesian optimization.
- BoTorch - Bayesian optimization in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
- scikit-opt - Heuristic Algorithms for optimization.
- sklearn-genetic-opt - Hyperparameters tuning and feature selection using evolutionary algorithms. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- SMAC3 - Sequential Model-based Algorithm Configuration.
- Optunity - Is a library containing various optimizers for hyperparameter tuning.
- hyperopt - Distributed Asynchronous Hyperparameter Optimization in Python.
- hyperopt-sklearn - Hyper-parameter optimization for sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- sklearn-deap - Use evolutionary algorithms instead of gridsearch in scikit-learn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- sigopt_sklearn - SigOpt wrappers for scikit-learn methods. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- Bayesian Optimization - A Python implementation of global optimization with gaussian processes.
- SafeOpt - Safe Bayesian Optimization.
- scikit-optimize - Sequential model-based optimization with a
scipy.optimize
interface. - Solid - A comprehensive gradient-free optimization framework written in Python.
- PySwarms - A research toolkit for particle swarm optimization in Python.
- Platypus - A Free and Open Source Python Library for Multiobjective Optimization.
- GPflowOpt - Bayesian Optimization using GPflow. <img height="20" src="img/tf_big2.png" alt="sklearn">
- POT - Python Optimal Transport library.
- Talos - Hyperparameter Optimization for Keras Models.
- nlopt - Library for nonlinear optimization (global and local, constrained or unconstrained).
- OR-Tools - An open-source software suite for optimization by Google; provides a unified programming interface to a half dozen solvers: SCIP, GLPK, GLOP, CP-SAT, CPLEX, and Gurobi.
Feature Engineering
General
- Featuretools - Automated feature engineering.
- Feature Engine - Feature engineering package with sklearn-like functionality. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- OpenFE - Automated feature generation with expert-level performance.
- skl-groups - A scikit-learn addon to operate on set/"group"-based features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- Feature Forge - A set of tools for creating and testing machine learning features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- few - A feature engineering wrapper for sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- scikit-mdr - A sklearn-compatible Python implementation of Multifactor Dimensionality Reduction (MDR) for feature construction. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- tsfresh - Automatic extraction of relevant features from time series. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- dirty_cat - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). <img height="20" src="img/sklearn_big.png" alt="sklearn">
- NitroFE - Moving window features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- sk-transformer - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps <img height="20" src="img/pandas_big.png" alt="pandas compatible">
Feature Selection
- scikit-feature - Feature selection repository in Python.
- boruta_py - Implementations of the Boruta all-relevant feature selection method. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- BoostARoota - A fast xgboost feature selection algorithm. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- scikit-rebate - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- zoofs - A feature selection library based on evolutionary algorithms.
Visualization
General Purposes
- Matplotlib - Plotting with Python.
- seaborn - Statistical data visualization using matplotlib.
- prettyplotlib - Painlessly create beautiful matplotlib plots.
- python-ternary - Ternary plotting library for Python with matplotlib.
- missingno - Missing data visualization module for Python.
- chartify - Python library that makes it easy for data scientists to create charts.
- physt - Improved histograms.
Interactive plots
- animatplot - A python package for animating plots built on matplotlib.
- plotly - A Python library that makes interactive and publication-quality graphs.
- Bokeh - Interactive Web Plotting for Python.
- Altair - Declarative statistical visualization library for Python. Can easily do many data transformation within the code to create graph
- bqplot - Plotting library for IPython/Jupyter notebooks
- pyecharts - Migrated from Echarts, a charting and visualization library, to Python's interactive visual drawing library.<img height="20" src="img/pyecharts.png" alt="pyecharts"> <img height="20" src="img/echarts.png" alt="echarts">
Map
- folium - Makes it easy to visualize data on an interactive open street map
- geemap - Python package for interactive mapping with Google Earth Engine (GEE)
Automatic Plotting
- HoloViews - Stop plotting your data - annotate your data and let it visualize itself.
- AutoViz: Visualize data automatically with 1 line of code (ideal for machine learning)
- SweetViz: Visualize and compare datasets, target values and associations, with one line of code.
NLP
- pyLDAvis: Visualize interactive topic model
Deployment
- fastapi - Modern, fast (high-performance), a web framework for building APIs with Python
- streamlit - Make it easy to deploy the machine learning model
- streamsync - No-code in the front, Python in the back. An open-source framework for creating data apps.
- gradio - Create UIs for your machine learning model in Python in 3 minutes.
- Vizro - A toolkit for creating modular data visualization applications.
- datapane - A collection of APIs to turn scripts and notebooks into interactive reports.
- binder - Enable sharing and execute Jupyter Notebooks
Statistics
- pandas_summary - Extension to pandas dataframes describe function. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- Pandas Profiling - Create HTML profiling reports from pandas DataFrame objects. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- statsmodels - Statistical modeling and econometrics in Python.
- stockstats - Supply a wrapper
StockDataFrame
based on thepandas.DataFrame
with inline stock statistics/indicators support. - weightedcalcs - A pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.
- scikit-posthocs - Pairwise Multiple Comparisons Post-hoc Tests.
- Alphalens - Performance analysis of predictive (alpha) stock factors.
Data Manipulation
Data Frames
- pandas - Powerful Python data analysis toolkit.
- polars - A fast multi-threaded, hybrid-out-of-core DataFrame library.
- Arctic - High-performance datastore for time series and tick data.
- datatable - Data.table for Python. <img height="20" src="img/R_big.png" alt="R inspired/ported lib">
- pandas_profiling - Create HTML profiling reports from pandas DataFrame objects
- cuDF - GPU DataFrame Library. <img height="20" src="img/pandas_big.png" alt="pandas compatible"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
- blaze - NumPy and pandas interface to Big Data. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- pandasql - Allows you to query pandas DataFrames using SQL syntax. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- pandas-gbq - pandas Google Big Query. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- xpandas - Universal 1d/2d data containers with Transformers .functionality for data analysis by The Alan Turing Institute.
- pysparkling - A pure Python implementation of Apache Spark's RDD and DStream interfaces. <img height="20" src="img/spark_big.png" alt="Apache Spark based">
- modin - Speed up your pandas workflows by changing a single line of code. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- swifter - A package that efficiently applies any function to a pandas dataframe or series in the fastest available manner.
- pandas-log - A package that allows providing feedback about basic pandas operations and finds both business logic and performance issues.
- vaex - Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second.
- xarray - Xarray combines the best features of NumPy and pandas for multidimensional data selection by supplementing numerical axis labels with named dimensions for more intuitive, concise, and less error-prone indexing routines.
Pipelines
- pdpipe - Sasy pipelines for pandas DataFrames.
- SSPipe - Python pipe (|) operator with support for DataFrames and Numpy, and Pytorch.
- pandas-ply - Functional data manipulation for pandas. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- Dplython - Dplyr for Python. <img height="20" src="img/R_big.png" alt="R inspired/ported lib">
- sklearn-pandas - pandas integration with sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- Dataset - Helps you conveniently work with random or sequential batches of your data and define data processing.
- pyjanitor - Clean APIs for data cleaning. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- meza - A Python toolkit for processing tabular data.
- Prodmodel - Build system for data science pipelines.
- dopanda - Hints and tips for using pandas in an analysis environment. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- Hamilton - A microframework for dataframe generation that applies Directed Acyclic Graphs specified by a flow of lazily evaluated Python functions.
Data-centric AI
- cleanlab - The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.
- snorkel - A system for quickly generating training data with weak supervision.
- dataprep - Collect, clean, and visualize your data in Python with a few lines of code.
Synthetic Data
- ydata-synthetic - A package to generate synthetic tabular and time-series data leveraging the state-of-the-art generative models. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
Distributed Computing
- Horovod - Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. <img height="20" src="img/tf_big2.png" alt="sklearn">
- PySpark - Exposes the Spark programming model to Python. <img height="20" src="img/spark_big.png" alt="Apache Spark based">
- Veles - Distributed machine learning platform.
- Jubatus - Framework and Library for Distributed Online Machine Learning.
- DMTK - Microsoft Distributed Machine Learning Toolkit.
- PaddlePaddle - PArallel Distributed Deep LEarning.
- dask-ml - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- Distributed - Distributed computation in Python.
Experimentation
- mlflow - Open source platform for the machine learning lifecycle.
- Neptune - A lightweight ML experiment tracking, results visualization, and management tool.
- dvc - Data Version Control | Git for Data & Models | ML Experiments Management.
- envd - 🏕️ machine learning development environment for data science and AI/ML engineering teams.
- Sacred - A tool to help you configure, organize, log, and reproduce experiments.
- Ax - Adaptive Experimentation Platform. <img height="20" src="img/sklearn_big.png" alt="sklearn">
Data Validation
- great_expectations - Always know what to expect from your data.
- pandera - A lightweight, flexible, and expressive statistical data testing library.
- deepchecks - Validation & testing of ML models and data during model development, deployment, and production. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- evidently - Evaluate and monitor ML models from validation to production.
- TensorFlow Data Validation - Library for exploring and validating machine learning data.
- DataComPy- A library to compare Pandas, Polars, and Spark data frames. It provides stats and lets users adjust for match accuracy.
Evaluation
- recmetrics - Library of useful metrics and plots for evaluating recommender systems.
- Metrics - Machine learning evaluation metric.
- sklearn-evaluation - Model evaluation made easy: plots, tables, and markdown reports. <img height="20" src="img/sklearn_big.png" alt="sklearn">
- AI Fairness 360 - Fairness metrics for datasets and ML models, explanations, and algorithms to mitigate bias in datasets and models.
Computations
- numpy - The fundamental package needed for scientific computing with Python.
- Dask - Parallel computing with task scheduling. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- bottleneck - Fast NumPy array functions written in C.
- CuPy - NumPy-like API accelerated with CUDA.
- scikit-tensor - Python library for multilinear algebra and tensor factorizations.
- numdifftools - Solve automatic numerical differentiation problems in one or more variables.
- quaternion - Add built-in support for quaternions to numpy.
- adaptive - Tools for adaptive and parallel samping of mathematical functions.
- NumExpr - A fast numerical expression evaluator for NumPy that comes with an integrated computing virtual machine to speed calculations up by avoiding memory allocation for intermediate results.
Web Scraping
- BeautifulSoup: The easiest library to scrape static websites for beginners
- Scrapy: Fast and extensible scraping library. Can write rules and create customized scraper without touching the core
- Selenium: Use Selenium Python API to access all functionalities of Selenium WebDriver in an intuitive way like a real user.
- Pattern: High level scraping for well-establish websites such as Google, Twitter, and Wikipedia. Also has NLP, machine learning algorithms, and visualization
- twitterscraper: Efficient library to scrape Twitter
Spatial Analysis
- GeoPandas - Python tools for geographic data. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
- PySal - Python Spatial Analysis Library.
Quantum Computing
- qiskit - Qiskit is an open-source SDK for working with quantum computers at the level of circuits, algorithms, and application modules.
- cirq - A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits.
- PennyLane - Quantum machine learning, automatic differentiation, and optimization of hybrid quantum-classical computations.
- QML - A Python Toolkit for Quantum Machine Learning.
Conversion
- sklearn-porter - Transpile trained scikit-learn estimators to C, Java, JavaScript, and others.
- ONNX - Open Neural Network Exchange.
- MMdnn - A set of tools to help users inter-operate among different deep learning frameworks.
- treelite - Universal model exchange and serialization format for decision tree forests.
Contributing
Contributions are welcome! :sunglasses: </br> Read the <a href=https://github.com/krzjoa/awesome-python-datascience/blob/master/CONTRIBUTING.md>contribution guideline</a>.
License
This work is licensed under the Creative Commons Attribution 4.0 International License - CC BY 4.0