Home

Awesome

Time Series Made Easy in Python

darts


PyPI version Conda Version Supported versions Docker Image Version (latest by date) GitHub Release Date GitHub Workflow Status Downloads Downloads codecov Code style: black Join the chat at https://gitter.im/u8darts/darts

Darts is a Python library for user-friendly forecasting and anomaly detection on time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The forecasting models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models can be trained on potentially large datasets containing multiple time series, and some of the models offer a rich support for probabilistic forecasting.

Darts also offers extensive anomaly detection capabilities. For instance, it is trivial to apply PyOD models on time series to obtain anomaly scores, or to wrap any of Darts forecasting or filtering models to obtain fully fledged anomaly detection models.

Documentation

High Level Introductions
Articles on Selected Topics

Quick Install

We recommend to first setup a clean Python environment for your project with Python 3.8+ using your favorite tool (conda, venv, virtualenv with or without virtualenvwrapper).

Once your environment is set up you can install darts using pip:

pip install darts

For more details you can refer to our installation instructions.

Example Usage

Forecasting

Create a TimeSeries object from a Pandas DataFrame, and split it in train/validation series:

import pandas as pd
from darts import TimeSeries

# Read a pandas DataFrame
df = pd.read_csv("AirPassengers.csv", delimiter=",")

# Create a TimeSeries, specifying the time and value columns
series = TimeSeries.from_dataframe(df, "Month", "#Passengers")

# Set aside the last 36 months as a validation series
train, val = series[:-36], series[-36:]

Fit an exponential smoothing model, and make a (probabilistic) prediction over the validation series' duration:

from darts.models import ExponentialSmoothing

model = ExponentialSmoothing()
model.fit(train)
prediction = model.predict(len(val), num_samples=1000)

Plot the median, 5th and 95th percentiles:

import matplotlib.pyplot as plt

series.plot()
prediction.plot(label="forecast", low_quantile=0.05, high_quantile=0.95)
plt.legend()
<div style="text-align:center;"> <img src="https://github.com/unit8co/darts/raw/master/static/images/example.png" alt="darts forecast example" /> </div>

Anomaly Detection

Load a multivariate series, trim it, keep 2 components, split train and validation sets:

from darts.datasets import ETTh2Dataset

series = ETTh2Dataset().load()[:10000][["MUFL", "LULL"]]
train, val = series.split_before(0.6)

Build a k-means anomaly scorer, train it on the train set and use it on the validation set to get anomaly scores:

from darts.ad import KMeansScorer

scorer = KMeansScorer(k=2, window=5)
scorer.fit(train)
anom_score = scorer.score(val)

Build a binary anomaly detector and train it over train scores, then use it over validation scores to get binary anomaly classification:

from darts.ad import QuantileDetector

detector = QuantileDetector(high_quantile=0.99)
detector.fit(scorer.score(train))
binary_anom = detector.detect(anom_score)

Plot (shifting and scaling some of the series to make everything appear on the same figure):

import matplotlib.pyplot as plt

series.plot()
(anom_score / 2. - 100).plot(label="computed anomaly score", c="orangered", lw=3)
(binary_anom * 45 - 150).plot(label="detected binary anomaly", lw=4)
<div style="text-align:center;"> <img src="https://github.com/unit8co/darts/raw/master/static/images/example_ad.png" alt="darts anomaly detection example" /> </div>

Features

Forecasting Models

Here's a breakdown of the forecasting models currently implemented in Darts. We are constantly working on bringing more models and features.

ModelSourcesTarget Series Support:<br/><br/>Univariate/<br/>MultivariateCovariates Support:<br/><br/>Past-observed/<br/>Future-known/<br/>StaticProbabilistic Forecasting:<br/><br/>Sampled/<br/>Distribution ParametersTraining & Forecasting on Multiple Series
Baseline Models<br/>(LocalForecastingModel)
NaiveMeanβœ… βœ…πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
NaiveSeasonalβœ… βœ…πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
NaiveDriftβœ… βœ…πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
NaiveMovingAverageβœ… βœ…πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
Statistical / Classic Models<br/>(LocalForecastingModel)
ARIMAβœ… πŸ”΄πŸ”΄ βœ… πŸ”΄βœ… πŸ”΄πŸ”΄
VARIMAπŸ”΄ βœ…πŸ”΄ βœ… πŸ”΄βœ… πŸ”΄πŸ”΄
AutoARIMAβœ… πŸ”΄πŸ”΄ βœ… πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
StatsForecastAutoArima (faster AutoARIMA)Nixtla's statsforecastβœ… πŸ”΄πŸ”΄ βœ… πŸ”΄βœ… πŸ”΄πŸ”΄
ExponentialSmoothingβœ… πŸ”΄πŸ”΄ πŸ”΄ πŸ”΄βœ… πŸ”΄πŸ”΄
StatsforecastAutoETSNixtla's statsforecastβœ… πŸ”΄πŸ”΄ βœ… πŸ”΄βœ… πŸ”΄πŸ”΄
StatsforecastAutoCESNixtla's statsforecastβœ… πŸ”΄πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
BATS and TBATSTBATS paperβœ… πŸ”΄πŸ”΄ πŸ”΄ πŸ”΄βœ… πŸ”΄πŸ”΄
Theta and FourThetaTheta & 4 Thetaβœ… πŸ”΄πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
StatsForecastAutoThetaNixtla's statsforecastβœ… πŸ”΄πŸ”΄ πŸ”΄ πŸ”΄βœ… πŸ”΄πŸ”΄
ProphetProphet repoβœ… πŸ”΄πŸ”΄ βœ… πŸ”΄βœ… πŸ”΄πŸ”΄
FFT (Fast Fourier Transform)βœ… πŸ”΄πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
KalmanForecaster using the Kalman filter and N4SID for system identificationN4SID paperβœ… βœ…πŸ”΄ βœ… πŸ”΄βœ… πŸ”΄πŸ”΄
Croston methodβœ… πŸ”΄πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄πŸ”΄
Global Baseline Models<br/>(GlobalForecastingModel)
GlobalNaiveAggregateβœ… βœ…πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄βœ…
GlobalNaiveDriftβœ… βœ…πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄βœ…
GlobalNaiveSeasonalβœ… βœ…πŸ”΄ πŸ”΄ πŸ”΄πŸ”΄ πŸ”΄βœ…
Regression Models<br/>(GlobalForecastingModel)
RegressionModel: generic wrapper around any sklearn regression modelβœ… βœ…βœ… βœ… βœ…πŸ”΄ πŸ”΄βœ…
LinearRegressionModelβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
RandomForestβœ… βœ…βœ… βœ… βœ…πŸ”΄ πŸ”΄βœ…
LightGBMModelβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
XGBModelβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
CatBoostModelβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
PyTorch (Lightning)-based Models<br/>(GlobalForecastingModel)
RNNModel (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic versionDeepAR paperβœ… βœ…πŸ”΄ βœ… πŸ”΄βœ… βœ…βœ…
BlockRNNModel (incl. LSTM and GRU)βœ… βœ…βœ… πŸ”΄ πŸ”΄βœ… βœ…βœ…
NBEATSModelN-BEATS paperβœ… βœ…βœ… πŸ”΄ πŸ”΄βœ… βœ…βœ…
NHiTSModelN-HiTS paperβœ… βœ…βœ… πŸ”΄ πŸ”΄βœ… βœ…βœ…
TCNModelTCN paper, DeepTCN paper, blog postβœ… βœ…βœ… πŸ”΄ πŸ”΄βœ… βœ…βœ…
TransformerModelβœ… βœ…βœ… πŸ”΄ πŸ”΄βœ… βœ…βœ…
TFTModel (Temporal Fusion Transformer)TFT paper, PyTorch Forecastingβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
DLinearModelDLinear paperβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
NLinearModelNLinear paperβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
TiDEModelTiDE paperβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
TSMixerModelTSMixer paper, PyTorch Implementationβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
Ensemble Models<br/>(GlobalForecastingModel): Model support is dependent on ensembled forecasting models and the ensemble model itself
NaiveEnsembleModelβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…
RegressionEnsembleModelβœ… βœ…βœ… βœ… βœ…βœ… βœ…βœ…

Community & Contact

Anyone is welcome to join our Gitter room to ask questions, make proposals, discuss use-cases, and more. If you spot a bug or have suggestions, GitHub issues are also welcome.

If what you want to tell us is not suitable for Gitter or Github, feel free to send us an email at <a href="mailto:darts@unit8.co">darts@unit8.co</a> for darts related matters or <a href="mailto:info@unit8.co">info@unit8.co</a> for any other inquiries.

Contribute

The development is ongoing, and we welcome suggestions, pull requests and issues on GitHub. All contributors will be acknowledged on the change log page.

Before working on a contribution (a new feature or a fix), check our contribution guidelines.

Citation

If you are using Darts in your scientific work, we would appreciate citations to the following JMLR paper.

Darts: User-Friendly Modern Machine Learning for Time Series

Bibtex entry:

@article{JMLR:v23:21-1177,
  author  = {Julien Herzen and Francesco LÀssig and Samuele Giuliano Piazzetta and Thomas Neuer and Léo Tafti and Guillaume Raille and Tomas Van Pottelbergh and Marek Pasieka and Andrzej Skrodzki and Nicolas Huguenin and Maxime Dumonal and Jan KoΓ…β€Ίcisz and Dennis Bader and Frédérick Gusset and Mounir Benheddi and Camila Williamson and Michal Kosinski and Matej Petrik and Gaël Grosch},
  title   = {Darts: User-Friendly Modern Machine Learning for Time Series},
  journal = {Journal of Machine Learning Research},
  year    = {2022},
  volume  = {23},
  number  = {124},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v23/21-1177.html}
}