Awesome
sklearn-compatible Random Bits Forest
Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a binary on Sourceforge. All credits belong to the authors. This is just some quick and dirty wrapper and testing code.
The authors present "...a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data with large size."
Note: the executable supplied by the authors has been compiled for Linux, and for CPUs supporting SSE instructions.
Usage
Usage example of the Random Bits Forest:
from uci_loader import *
from randombitsforest import RandomBitsForest
X, y = getdataset('diabetes')
from sklearn.ensemble.forest import RandomForestClassifier
classifier = RandomBitsForest()
classifier.fit(X[:len(y)/2], y[:len(y)/2])
p = classifier.predict(X[len(y)/2:])
print "Random Bits Forest Accuracy:", np.mean(p == y[len(y)/2:])
classifier = RandomForestClassifier(n_estimators=20)
classifier.fit(X[:len(y)/2], y[:len(y)/2])
print "Random Forest Accuracy:", np.mean(classifier.predict(X[len(y)/2:]) == y[len(y)/2:])
Usage example for the UCI comparison:
from uci_comparison import compare_estimators
from sklearn.ensemble.forest import RandomForestClassifier, ExtraTreesClassifier
from randombitsforest import RandomBitsForest
estimators = {
'RandomForest': RandomForestClassifier(n_estimators=200),
'ExtraTrees': ExtraTreesClassifier(n_estimators=200),
'RandomBitsForest': RandomBitsForest(number_of_trees=200)
}
# optionally, pass a list of UCI dataset identifiers as the datasets parameter, e.g. datasets=['iris', 'diabetes']
# optionally, pass a dict of scoring functions as the metric parameter, e.g. metrics={'F1-score': f1_score}
compare_estimators(estimators)
"""
ExtraTrees F1score RandomBitsForest F1score RandomForest F1score
========================================================================================
breastcancer (n=683) 0.960 (SE=0.003) 0.954 (SE=0.003) *0.963 (SE=0.003)
breastw (n=699) *0.956 (SE=0.003) 0.951 (SE=0.003) 0.953 (SE=0.005)
creditg (n=1000) *0.372 (SE=0.005) 0.121 (SE=0.003) 0.371 (SE=0.005)
haberman (n=306) 0.317 (SE=0.015) *0.346 (SE=0.020) 0.305 (SE=0.016)
heart (n=270) 0.852 (SE=0.004) *0.854 (SE=0.004) 0.852 (SE=0.006)
ionosphere (n=351) 0.740 (SE=0.037) *0.741 (SE=0.037) 0.736 (SE=0.037)
labor (n=57) 0.246 (SE=0.016) 0.128 (SE=0.014) *0.361 (SE=0.018)
liverdisorders (n=345) 0.707 (SE=0.013) *0.723 (SE=0.013) 0.713 (SE=0.012)
tictactoe (n=958) 0.030 (SE=0.007) *0.336 (SE=0.040) 0.030 (SE=0.007)
vote (n=435) *0.658 (SE=0.012) 0.228 (SE=0.017) *0.658 (SE=0.012)
"""