Home

Awesome

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories.

Build Status

Metrics provides implementations of various supervised machine learning evaluation metrics in the following languages:

For more detailed installation instructions, see the README for each implementation.

EVALUATION METRICS

<table> <tr><td>Evaluation Metric</td><td>Python</td><td>R</td><td>Haskell</td><td>MATLAB / Octave</td></tr> <tr><td>Absolute Error (AE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Average Precision at K (APK, AP@K)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Area Under the ROC (AUC)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Classification Error (CE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>F1 Score (F1)</td><td> </td><td>&#10003;</td><td> </td><td></td></tr> <tr><td>Gini</td><td> </td><td> </td><td> </td><td>&#10003;</td></tr> <tr><td>Levenshtein</td><td>&#10003;</td><td> </td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Log Loss (LL)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Mean Log Loss (LogLoss)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Mean Absolute Error (MAE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Mean Average Precision at K (MAPK, MAP@K)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Mean Quadratic Weighted Kappa</td><td>&#10003;</td><td>&#10003;</td><td> </td><td>&#10003;</td></tr> <tr><td>Mean Squared Error (MSE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Mean Squared Log Error (MSLE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Normalized Gini</td><td> </td><td> </td><td> </td><td>&#10003;</td></tr> <tr><td>Quadratic Weighted Kappa</td><td>&#10003;</td><td>&#10003;</td><td> </td><td>&#10003;</td></tr> <tr><td>Relative Absolute Error (RAE)</td><td> </td><td>&#10003;</td><td> </td><td> </td></tr> <tr><td>Root Mean Squared Error (RMSE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Relative Squared Error (RSE)</td><td> </td><td>&#10003;</td><td> </td><td> </td></tr> <tr><td>Root Relative Squared Error (RRSE)</td><td> <td>&#10003;</td> </td><td> </td><td></td></tr> <tr><td>Root Mean Squared Log Error (RMSLE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Squared Error (SE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> <tr><td>Squared Log Error (SLE)</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td><td>&#10003;</td></tr> </table>

TO IMPLEMENT

HIGHER LEVEL TRANSFORMATIONS TO HANDLE

PROPERTIES METRICS CAN HAVE

(Nonexhaustive and to be added in the future)