Home

Awesome

<!--- Copyright 2018-2020 H2O.ai Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -->

datatable

PyPi version License Build Status Documentation Status Codacy Badge

This is a Python package for manipulating 2-dimensional tabular data structures (aka data frames). It is close in spirit to pandas or SFrame; however we put specific emphasis on speed and big data support. As the name suggests, the package is closely related to R's data.table and attempts to mimic its core algorithms and API.

Requirements: Python 3.6+ (64 bit) and pip 20.3+.

Project goals

datatable started in 2017 as a toolkit for performing big data (up to 100GB) operations on a single-node machine, at the maximum speed possible. Such requirements are dictated by modern machine-learning applications, which need to process large volumes of data and generate many features in order to achieve the best model accuracy. The first user of datatable was Driverless.ai.

The set of features that we want to implement with datatable is at least the following:

Installation

On macOS, Linux and Windows systems installing datatable is as easy as

pip install datatable

On all other platforms a source distribution will be needed. For more information see Build instructions.

See also