Awesome
<div align='center'> <img src=https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg > <img src=https://img.shields.io/github/downloads/DefTruth/Awesome-LLM-Inference/total?color=ccf&label=downloads&logo=github&logoColor=lightgrey > <img src=https://img.shields.io/github/forks/DefTruth/Awesome-LLM-Inference.svg?style=social > <img src=https://img.shields.io/github/stars/DefTruth/Awesome-LLM-Inference.svg?style=social > <img src=https://img.shields.io/github/watchers/DefTruth/Awesome-LLM-Inference.svg?style=social > <img src=https://img.shields.io/badge/Release-v2.6-brightgreen.svg > <img src=https://img.shields.io/badge/License-GPLv3.0-turquoise.svg > </div>📒Introduction
Awesome-LLM-Inference: A curated list of 📙Awesome LLM Inference Papers with Codes. For Awesome SD Inference with Distributed/Caching/Sampling , please check 📖Awesome-SD-Inference . For CUDA learn notes, please check 📖CUDA-Learn-Notes .
©️Citations
@misc{Awesome-LLM-Inference@2024,
title={Awesome-LLM-Inference: A curated list of Awesome LLM Inference Papers with codes},
url={https://github.com/DefTruth/Awesome-LLM-Inference},
note={Open-source software available at https://github.com/DefTruth/Awesome-LLM-Inference},
author={DefTruth, liyucheng09 etc},
year={2024}
}
📙Awesome LLM Inference Papers with Codes
<div id="paperlist"></div>🎉Download PDFs
Awesome LLM Inference for Beginners.pdf: 500 pages, FastServe, FlashAttention 1/2, FlexGen, FP8, LLM.int8(), PagedAttention, RoPE, SmoothQuant, WINT8/4, Continuous Batching, ZeroQuant 1/2/FP, AWQ etc.
<div align='center'> <img src=https://github.com/DefTruth/Awesome-LLM-Inference/assets/31974251/0ed77e9d-a1eb-4095-9a82-bad624964e55 > </div>📖Contents
- 📖Trending LLM/VLM Topics🔥🔥🔥
- 📖LLM Algorithmic/Eval Survey
- 📖LLM Train/Inference Framework/Design
- 📖Weight/Activation Quantize/Compress🔥
- 📖Continuous/In-flight Batching
- 📖IO/FLOPs-Aware/Sparse Attention🔥
- 📖KV Cache Scheduling/Quantize/Dropping🔥
- 📖Prompt/Context Compression🔥
- 📖Long Context Attention/KV Cache Optimization🔥🔥
- 📖Early-Exit/Intermediate Layer Decoding
- 📖Parallel Decoding/Sampling🔥
- 📖Structured Prune/KD/Weight Sparse
- 📖Mixture-of-Experts(MoE) LLM Inference🔥
- 📖CPU/NPU/FPGA/Mobile Inference
- 📖Non Transformer Architecture🔥
- 📖GEMM/Tensor Cores/WMMA/Parallel
- 📖VLM/Position Embed/Others
📖Trending LLM/VLM Topics (©️back👆🏻)
<div id="Trending-LLM-VLM-Topics"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2024.04 | 🔥🔥🔥[Open-Sora] Open-Sora: Democratizing Efficient Video Production for All(@hpcaitech) | [docs] | [Open-Sora] | ⭐️⭐️ |
2024.04 | 🔥🔥🔥[Open-Sora Plan] Open-Sora Plan: This project aim to reproduce Sora (Open AI T2V model)(@PKU) | [report] | [Open-Sora-Plan] | ⭐️⭐️ |
2024.05 | 🔥🔥🔥[DeepSeek-V2] DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model(@DeepSeek-AI) | [pdf] | [DeepSeek-V2] | ⭐️⭐️ |
2024.05 | 🔥🔥[YOCO] You Only Cache Once: Decoder-Decoder Architectures for Language Models(@Microsoft) | [pdf] | [unilm-YOCO] | ⭐️⭐️ |
2024.06 | 🔥[Mooncake] Mooncake: A KVCache-centric Disaggregated Architecture for LLM Serving(@Moonshot AI) | [pdf] | [Mooncake] | ⭐️⭐️ |
2024.07 | 🔥🔥[FlashAttention-3] FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision(@TriDao etc) | [pdf] | [flash-attention] | ⭐️⭐️ |
2024.07 | 🔥🔥[MInference 1.0] MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention(@Microsoft) | [pdf] | [MInference 1.0] | ⭐️⭐️ |
📖LLM Algorithmic/Eval Survey (©️back👆🏻)
<div id="LLM-Algorithmic-Eval-Survey"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2023.10 | [Evaluating] Evaluating Large Language Models: A Comprehensive Survey(@tju.edu.cn) | [pdf] | [Awesome-LLMs-Evaluation] | ⭐️ |
2023.11 | 🔥[Runtime Performance] Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models(@hkust-gz.edu.cn) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.11 | [ChatGPT Anniversary] ChatGPT’s One-year Anniversary: Are Open-Source Large Language Models Catching up?(@e.ntu.edu.sg) | [pdf] | ⚠️ | ⭐️ |
2023.12 | [Algorithmic Survey] The Efficiency Spectrum of Large Language Models: An Algorithmic Survey(@Microsoft) | [pdf] | ⚠️ | ⭐️ |
2023.12 | [Security and Privacy] A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly(@Drexel University) | [pdf] | ⚠️ | ⭐️ |
2023.12 | 🔥[LLMCompass] A Hardware Evaluation Framework for Large Language Model Inference(@princeton.edu) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.12 | 🔥[Efficient LLMs] Efficient Large Language Models: A Survey(@Ohio State University etc) | [pdf] | [Efficient-LLMs-Survey] | ⭐️⭐️ |
2023.12 | [Serving Survey] Towards Efficient Generative Large Language Model Serving: A Survey from Algorithms to Systems(@Carnegie Mellon University) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.01 | [Understanding LLMs] Understanding LLMs: A Comprehensive Overview from Training to Inference(@Shaanxi Normal University etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.02 | [LLM-Viewer] LLM Inference Unveiled: Survey and Roofline Model Insights(@Zhihang Yuan etc) | [pdf] | [LLM-Viewer] | ⭐️⭐️ |
2024.07 | [Internal Consistency & Self-Feedback] Internal Consistency and Self-Feedback in Large Language Models: A Survey | [pdf] | [ICSF-Survey] | ⭐️⭐️ |
2024.09 | [Low-bit] A Survey of Low-bit Large Language Models: Basics, Systems, and Algorithms(@Beihang etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.10 | [LLM Inference] LARGE LANGUAGE MODEL INFERENCE ACCELERATION: A COMPREHENSIVE HARDWARE PERSPECTIVE(@SJTU etc) | [pdf] | ⚠️ | ⭐️⭐️ |
📖LLM Train/Inference Framework/Design (©️back👆🏻)
<div id="LLM-Train-Inference-Framework"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2020.05 | 🔥[Megatron-LM] Training Multi-Billion Parameter Language Models Using Model Parallelism(@NVIDIA) | [pdf] | [Megatron-LM] | ⭐️⭐️ |
2023.03 | [FlexGen] High-Throughput Generative Inference of Large Language Models with a Single GPU(@Stanford University etc) | [pdf] | [FlexGen] | ⭐️ |
2023.05 | [SpecInfer] Accelerating Generative Large Language Model Serving with Speculative Inference and Token Tree Verification(@Peking University etc) | [pdf] | [FlexFlow] | ⭐️ |
2023.05 | [FastServe] Fast Distributed Inference Serving for Large Language Models(@Peking University etc) | [pdf] | ⚠️ | ⭐️ |
2023.09 | 🔥[vLLM] Efficient Memory Management for Large Language Model Serving with PagedAttention(@UC Berkeley etc) | [pdf] | [vllm] | ⭐️⭐️ |
2023.09 | [StreamingLLM] EFFICIENT STREAMING LANGUAGE MODELS WITH ATTENTION SINKS(@Meta AI etc) | [pdf] | [streaming-llm] | ⭐️ |
2023.09 | [Medusa] Medusa: Simple Framework for Accelerating LLM Generation with Multiple Decoding Heads(@Tianle Cai etc) | [blog] | [Medusa] | ⭐️ |
2023.10 | 🔥[TensorRT-LLM] NVIDIA TensorRT LLM(@NVIDIA) | [docs] | [TensorRT-LLM] | ⭐️⭐️ |
2023.11 | 🔥[DeepSpeed-FastGen 2x vLLM?] DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference(@Microsoft) | [pdf] | [deepspeed-fastgen] | ⭐️⭐️ |
2023.12 | 🔥[PETALS] Distributed Inference and Fine-tuning of Large Language Models Over The Internet(@HSE Univesity etc) | [pdf] | [petals] | ⭐️⭐️ |
2023.10 | [LightSeq] LightSeq: Sequence Level Parallelism for Distributed Training of Long Context Transformers(@UC Berkeley etc) | [pdf] | [LightSeq] | ⭐️ |
2023.12 | [PowerInfer] PowerInfer: Fast Large Language Model Serving with a Consumer-grade GPU(@SJTU) | [pdf] | [PowerInfer] | ⭐️ |
2024.01 | [inferflow]INFERFLOW: AN EFFICIENT AND HIGHLY CONFIGURABLE INFERENCE ENGINE FOR LARGE LANGUAGE MODELS(@Tencent AI Lab) | [pdf] | [inferflow] | ⭐️ |
2024.06 | 🔥[Mooncake] Mooncake: A KVCache-centric Disaggregated Architecture for LLM Serving(@Moonshot AI) | [pdf] | [Mooncake] | ⭐️⭐️ |
2023.06 | 🔥[LMDeploy] LMDeploy: LMDeploy is a toolkit for compressing, deploying, and serving LLMs(@InternLM) | [docs] | [lmdeploy] | ⭐️⭐️ |
2023.05 | 🔥[MLC-LLM]Universal LLM Deployment Engine with ML Compilation(@mlc-ai) | [docs] | [mlc-llm] | ⭐️⭐️ |
2023.08 | 🔥[LightLLM] LightLLM is a Python-based LLM (Large Language Model) inference and serving framework(@ModelTC) | [docs] | [lightllm] | ⭐️⭐️ |
2023.03 | 🔥[llama.cpp] llama.cpp: Inference of Meta's LLaMA model (and others) in pure C/C++(@ggerganov) | [docs] | [llama.cpp] | ⭐️⭐️ |
2024.02 | 🔥[flashinfer] FlashInfer: Kernel Library for LLM Serving(@flashinfer-ai) | [docs] | [flashinfer] | ⭐️⭐️ |
2024.06 | 🔥[Mooncake] Mooncake: A KVCache-centric Disaggregated Architecture for LLM Serving(@Moonshot AI) | [pdf] | [Mooncake] | ⭐️⭐️ |
2024.07 | 🔥[DynamoLLM] DynamoLLM: Designing LLM Inference Clusters for Performance and Energy Efficiency(@Microsoft Azure Research) | [pdf] | ⚠️ | ⭐️ |
2024.08 | 🔥[NanoFlow] NanoFlow: Towards Optimal Large Language Model Serving Throughput(@University of Washington) | [pdf] | [Nanoflow] | ⭐️⭐️ |
2024.08 | 🔥[Decentralized LLM] Decentralized LLM Inference over Edge Networks with Energy Harvesting(@Padova) | [pdf] | ⚠️ | ⭐️ |
📖Continuous/In-flight Batching (©️back👆🏻)
<div id="Continuous-In-flight-Batching"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2022.07 | 🔥[Continuous Batching] Orca: A Distributed Serving System for Transformer-Based Generative Models(@Seoul National University etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.10 | 🔥[In-flight Batching] NVIDIA TensorRT LLM Batch Manager(@NVIDIA) | [docs] | [TensorRT-LLM] | ⭐️⭐️ |
2023.11 | 🔥[DeepSpeed-FastGen 2x vLLM?] DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference(@Microsoft) | [blog] | [deepspeed-fastgen] | ⭐️⭐️ |
2023.11 | [Splitwise] Splitwise: Efficient Generative LLM Inference Using Phase Splitting(@Microsoft etc) | [pdf] | ⚠️ | ⭐️ |
2023.12 | [SpotServe] SpotServe: Serving Generative Large Language Models on Preemptible Instances(@cmu.edu etc) | [pdf] | [SpotServe] | ⭐️ |
2023.10 | [LightSeq] LightSeq: Sequence Level Parallelism for Distributed Training of Long Context Transformers(@UC Berkeley etc) | [pdf] | [LightSeq] | ⭐️ |
2024.05 | 🔥[vAttention] vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention(@Microsoft Research India) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.07 | 🔥🔥[vTensor] vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving(@Shanghai Jiao Tong University etc) | [pdf] | [vTensor] | ⭐️⭐️ |
2024.08 | 🔥[Automatic Inference Engine Tuning] Towards SLO-Optimized LLM Serving via Automatic Inference Engine Tuning(@Nanjing University etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.08 | 🔥[SJF Scheduling] Efficient LLM Scheduling by Learning to Rank(@UCSD etc) | [pdf] | ⚠️ | ⭐️⭐️ |
📖Weight/Activation Quantize/Compress (©️back👆🏻)
<div id="Weight-Activation-Quantize-Compress"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2022.06 | 🔥[ZeroQuant] Efficient and Affordable Post-Training Quantization for Large-Scale Transformers(@Microsoft) | [pdf] | [DeepSpeed] | ⭐️⭐️ |
2022.08 | [FP8-Quantization] FP8 Quantization: The Power of the Exponent(@Qualcomm AI Research) | [pdf] | [FP8-quantization] | ⭐️ |
2022.08 | [LLM.int8()] 8-bit Matrix Multiplication for Transformers at Scale(@Facebook AI Research etc) | [pdf] | [bitsandbytes] | ⭐️ |
2022.10 | 🔥[GPTQ] GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED TRANSFORMERS(@IST Austria etc) | [pdf] | [gptq] | ⭐️⭐️ |
2022.11 | 🔥[WINT8/4] Who Says Elephants Can’t Run: Bringing Large Scale MoE Models into Cloud Scale Production(@NVIDIA&Microsoft) | [pdf] | [FasterTransformer] | ⭐️⭐️ |
2022.11 | 🔥[SmoothQuant] Accurate and Efficient Post-Training Quantization for Large Language Models(@MIT etc) | [pdf] | [smoothquant] | ⭐️⭐️ |
2023.03 | [ZeroQuant-V2] Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation(@Microsoft) | [pdf] | [DeepSpeed] | ⭐️ |
2023.06 | 🔥[AWQ] AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration(@MIT etc) | [pdf] | [llm-awq] | ⭐️⭐️ |
2023.06 | [SpQR] SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression(@University of Washington etc) | [pdf] | [SpQR] | ⭐️ |
2023.06 | [SqueezeLLM] SQUEEZELLM: DENSE-AND-SPARSE QUANTIZATION(@berkeley.edu) | [pdf] | [SqueezeLLM] | ⭐️ |
2023.07 | [ZeroQuant-FP] A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats(@Microsoft) | [pdf] | [DeepSpeed] | ⭐️ |
2023.09 | [KV Cache FP8 + WINT4] Exploration on LLM inference performance optimization(@HPC4AI) | [blog] | ⚠️ | ⭐️ |
2023.10 | [FP8-LM] FP8-LM: Training FP8 Large Language Models(@Microsoft etc) | [pdf] | [MS-AMP] | ⭐️ |
2023.10 | [LLM-Shearing] SHEARED LLAMA: ACCELERATING LANGUAGE MODEL PRE-TRAINING VIA STRUCTURED PRUNING(@cs.princeton.edu etc) | [pdf] | [LLM-Shearing] | ⭐️ |
2023.10 | [LLM-FP4] LLM-FP4: 4-Bit Floating-Point Quantized Transformers(@ust.hk&meta etc) | [pdf] | [LLM-FP4] | ⭐️ |
2023.11 | [2-bit LLM] Enabling Fast 2-bit LLM on GPUs: Memory Alignment, Sparse Outlier, and Asynchronous Dequantization(@Shanghai Jiao Tong University etc) | [pdf] | ⚠️ | ⭐️ |
2023.12 | [SmoothQuant+] SmoothQuant+: Accurate and Efficient 4-bit Post-Training Weight Quantization for LLM(@ZTE Corporation) | [pdf] | [smoothquantplus] | ⭐️ |
2023.11 | [OdysseyLLM W4A8] A Speed Odyssey for Deployable Quantization of LLMs(@meituan.com) | [pdf] | ⚠️ | ⭐️ |
2023.12 | 🔥[SparQ] SPARQ ATTENTION: BANDWIDTH-EFFICIENT LLM INFERENCE(@graphcore.ai) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.12 | [Agile-Quant] Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge(@Northeastern University&Oracle) | [pdf] | ⚠️ | ⭐️ |
2023.12 | [CBQ] CBQ: Cross-Block Quantization for Large Language Models(@ustc.edu.cn) | [pdf] | ⚠️ | ⭐️ |
2023.10 | [QLLM] QLLM: ACCURATE AND EFFICIENT LOW-BITWIDTH QUANTIZATION FOR LARGE LANGUAGE MODELS(@ZIP Lab&SenseTime Research etc) | [pdf] | ⚠️ | ⭐️ |
2024.01 | [FP6-LLM] FP6-LLM: Efficiently Serving Large Language Models Through FP6-Centric Algorithm-System Co-Design(@Microsoft etc) | [pdf] | ⚠️ | ⭐️ |
2024.05 | 🔥🔥[W4A8KV4] QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving(@MIT&NVIDIA) | [pdf] | [qserve] | ⭐️⭐️ |
2024.05 | 🔥[SpinQuant] SpinQuant: LLM Quantization with Learned Rotations(@Meta) | [pdf] | ⚠️ | ⭐️ |
2024.05 | 🔥[I-LLM] I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models(@Houmo AI) | [pdf] | ⚠️ | ⭐️ |
2024.06 | 🔥[OutlierTune] OutlierTune: Efficient Channel-Wise Quantization for Large Language Models(@Beijing University) | [pdf] | ⚠️ | ⭐️ |
2024.06 | 🔥[GPTQT] GPTQT: Quantize Large Language Models Twice to Push the Efficiency(@zju) | [pdf] | ⚠️ | ⭐️ |
2024.08 | 🔥[ABQ-LLM] ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models(@ByteDance) | [pdf] | [ABQ-LLM] | ⭐️ |
2024.08 | 🔥[1-bit LLMs] Matmul or No Matmal in the Era of 1-bit LLMs(@University of South Carolina) | [pdf] | ⚠️ | ⭐️ |
2024.08 | 🔥[ACTIVATION SPARSITY] TRAINING-FREE ACTIVATION SPARSITY IN LARGE LANGUAGE MODELS(@MIT etc) | [pdf] | [TEAL] | ⭐️ |
2024.09 | 🔥[VPTQ] VPTQ: EXTREME LOW-BIT VECTOR POST-TRAINING QUANTIZATION FOR LARGE LANGUAGE MODELS(@Microsoft) | [pdf] | [VPTQ] | ⭐️ |
📖IO/FLOPs-Aware/Sparse Attention (©️back👆🏻)
<div id="IO-FLOPs-Aware-Attention-Sparse"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2018.05 | [Online Softmax] Online normalizer calculation for softmax(@NVIDIA) | [pdf] | ⚠️ | ⭐️ |
2019.11 | 🔥[MQA] Fast Transformer Decoding: One Write-Head is All You Need(@Google) | [pdf] | ⚠️ | ⭐️⭐️ |
2020.10 | [Hash Attention] REFORMER: THE EFFICIENT TRANSFORMER(@Google) | [pdf] | [reformer] | ⭐️⭐️ |
2022.05 | 🔥[FlashAttention] Fast and Memory-Efficient Exact Attention with IO-Awareness(@Stanford University etc) | [pdf] | [flash-attention] | ⭐️⭐️ |
2022.10 | [Online Softmax] SELF-ATTENTION DOES NOT NEED O(n^2) MEMORY(@Google) | [pdf] | ⚠️ | ⭐️ |
2023.05 | [FlashAttention] From Online Softmax to FlashAttention(@cs.washington.edu) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.05 | [FLOP, I/O] Dissecting Batching Effects in GPT Inference(@Lequn Chen) | [blog] | ⚠️ | ⭐️ |
2023.05 | 🔥🔥[GQA] GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints(@Google) | [pdf] | [flaxformer] | ⭐️⭐️ |
2023.06 | [Sparse FlashAttention] Faster Causal Attention Over Large Sequences Through Sparse Flash Attention(@EPFL etc) | [pdf] | [dynamic-sparse-flash-attention] | ⭐️ |
2023.07 | 🔥[FlashAttention-2] Faster Attention with Better Parallelism and Work Partitioning(@Stanford University etc) | [pdf] | [flash-attention] | ⭐️⭐️ |
2023.10 | 🔥[Flash-Decoding] Flash-Decoding for long-context inference(@Stanford University etc) | [blog] | [flash-attention] | ⭐️⭐️ |
2023.11 | [Flash-Decoding++] FLASHDECODING++: FASTER LARGE LANGUAGE MODEL INFERENCE ON GPUS(@Tsinghua University&Infinigence-AI) | [pdf] | ⚠️ | ⭐️ |
2023.01 | [SparseGPT] SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot(@ISTA etc) | [pdf] | [sparsegpt] | ⭐️ |
2023.12 | 🔥[GLA] Gated Linear Attention Transformers with Hardware-Efficient Training(@MIT-IBM Watson AI) | [pdf] | gated_linear_attention | ⭐️⭐️ |
2023.12 | [SCCA] SCCA: Shifted Cross Chunk Attention for long contextual semantic expansion(@Beihang University) | [pdf] | ⚠️ | ⭐️ |
2023.12 | 🔥[FlashLLM] LLM in a flash: Efficient Large Language Model Inference with Limited Memory(@Apple) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.03 | 🔥🔥[CHAI] CHAI: Clustered Head Attention for Efficient LLM Inference(@cs.wisc.edu etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.04 | 🔥🔥[DeFT] DeFT: Decoding with Flash Tree-Attention for Efficient Tree-structured LLM Inference(@Westlake University etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.04 | [MoA] MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression(@thu et el.) | [pdf] | [MoA] | ⭐️ |
2024.07 | 🔥🔥[FlashAttention-3] FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision(@TriDao etc) | [pdf] | [flash-attention] | ⭐️⭐️ |
2024.07 | 🔥🔥[MInference 1.0] MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention(@Microsoft) | [pdf] | [MInference 1.0] | ⭐️⭐️ |
2024.07 | 🔥🔥[Shared Attention] Beyond KV Caching: Shared Attention for Efficient LLMs(@Kyushu University etc) | [pdf] | [shareAtt] | ⭐️ |
2024.09 | 🔥🔥[CHESS] CHESS : Optimizing LLM Inference via Channel-Wise Thresholding and Selective Sparsification(@Wuhan University) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥🔥[INT-FLASHATTENTION] INT-FLASHATTENTION: ENABLING FLASH ATTENTION FOR INT8 QUANTIZATION(@PKU etc) | [pdf] | [INT-FlashAttention] | ⭐️ |
📖KV Cache Scheduling/Quantize/Dropping (©️back👆🏻)
<div id="KV-Cache-Scheduling-Quantize-Dropping"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2019.11 | 🔥[MQA] Fast Transformer Decoding: One Write-Head is All You Need(@Google) | [pdf] | ⚠️ | ⭐️⭐️ |
2022.06 | [LTP] Learned Token Pruning for Transformers(@UC Berkeley etc) | [pdf] | [LTP] | ⭐️ |
2023.05 | 🔥🔥[GQA] GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints(@Google) | [pdf] | [flaxformer] | ⭐️⭐️ |
2023.05 | [KV Cache Compress] Scissorhands: Exploiting the Persistence of Importance Hypothesis for LLM KV Cache Compression at Test Time(@) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.06 | [H2O] H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models(@Rice University etc) | [pdf] | [H2O] | ⭐️ |
2023.06 | [QK-Sparse/Dropping Attention] Faster Causal Attention Over Large Sequences Through Sparse Flash Attention(@EPFL etc) | [pdf] | [dynamic-sparse-flash-attention] | ⭐️ |
2023.08 | 🔥🔥[Chunked Prefills] SARATHI: Efficient LLM Inference by Piggybacking Decodes with Chunked Prefills(@Microsoft etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.09 | 🔥🔥[PagedAttention] Efficient Memory Management for Large Language Model Serving with PagedAttention(@UC Berkeley etc) | [pdf] | [vllm] | ⭐️⭐️ |
2023.09 | [KV Cache FP8 + WINT4] Exploration on LLM inference performance optimization(@HPC4AI) | [blog] | ⚠️ | ⭐️ |
2023.10 | 🔥[TensorRT-LLM KV Cache FP8] NVIDIA TensorRT LLM(@NVIDIA) | [docs] | [TensorRT-LLM] | ⭐️⭐️ |
2023.10 | 🔥[Adaptive KV Cache Compress] MODEL TELLS YOU WHAT TO DISCARD: ADAPTIVE KV CACHE COMPRESSION FOR LLMS(@illinois.eduµsoft) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.10 | [CacheGen] CacheGen: Fast Context Loading for Language Model Applications(@Chicago University&Microsoft) | [pdf] | [LMCache] | ⭐️ |
2023.12 | [KV-Cache Optimizations] Leveraging Speculative Sampling and KV-Cache Optimizations Together for Generative AI using OpenVINO(@Haim Barad etc) | [pdf] | ⚠️ | ⭐️ |
2023.12 | [KV Cache Compress with LoRA] Compressed Context Memory for Online Language Model Interaction (@SNU & NAVER AI) | [pdf] | [Compressed-Context-Memory] | ⭐️⭐️ |
2023.12 | 🔥🔥[RadixAttention] Efficiently Programming Large Language Models using SGLang(@Stanford University etc) | [pdf] | [sglang] | ⭐️⭐️ |
2024.01 | 🔥🔥[DistKV-LLM] Infinite-LLM: Efficient LLM Service for Long Context with DistAttention and Distributed KVCache(@Alibaba etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.02 | 🔥🔥[Prompt Caching] Efficient Prompt Caching via Embedding Similarity(@UC Berkeley) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.02 | 🔥🔥[Less] Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference(@CMU etc) | [pdf] | ⚠️ | ⭐️ |
2024.02 | 🔥🔥[MiKV] No Token Left Behind: Reliable KV Cache Compression via Importance-Aware Mixed Precision Quantization(@KAIST) | [pdf] | ⚠️ | ⭐️ |
2024.02 | 🔥🔥[Shared Prefixes] Hydragen: High-Throughput LLM Inference with Shared Prefixes | [pdf] | ⚠️ | ⭐️⭐️ |
2024.02 | 🔥🔥[ChunkAttention] ChunkAttention: Efficient Self-Attention with Prefix-Aware KV Cache and Two-Phase Partition(@microsoft.com) | [pdf] | [chunk-attention] | ⭐️⭐️ |
2024.03 | 🔥[QAQ] QAQ: Quality Adaptive Quantization for LLM KV Cache(@@smail.nju.edu.cn) | [pdf] | [QAQ-KVCacheQuantization] | ⭐️⭐️ |
2024.03 | 🔥🔥[DMC] Dynamic Memory Compression: Retrofitting LLMs for Accelerated Inference(@NVIDIA etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.03 | 🔥🔥[Keyformer] Keyformer: KV Cache reduction through key tokens selection for Efficient Generative Inference(@ece.ubc.ca etc) | [pdf] | [Keyformer] | ⭐️⭐️ |
2024.03 | [FASTDECODE] FASTDECODE: High-Throughput GPU-Efficient LLM Serving using Heterogeneous(@Tsinghua University) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.03 | [Sparsity-Aware KV Caching] ALISA: Accelerating Large Language Model Inference via Sparsity-Aware KV Caching(@ucf.edu) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.03 | 🔥[GEAR] GEAR: An Efficient KV Cache Compression Recipe for Near-Lossless Generative Inference of LLM(@gatech.edu) | [pdf] | [GEAR] | ⭐️ |
2024.04 | [SqueezeAttention] SQUEEZEATTENTION: 2D Management of KV-Cache in LLM Inference via Layer-wise Optimal Budget(@lzu.edu.cn etc) | [pdf] | [SqueezeAttention] | ⭐️⭐️ |
2024.04 | [SnapKV] SnapKV: LLM Knows What You are Looking for Before Generation(@UIUC) | [pdf] | [SnapKV] | ⭐️ |
2024.05 | 🔥[vAttention] vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention(@Microsoft Research India) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.05 | 🔥[KVCache-1Bit] KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization(@Rice University) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.05 | 🔥[KV-Runahead] KV-Runahead: Scalable Causal LLM Inference by Parallel Key-Value Cache Generation(@Apple etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.05 | 🔥[ZipCache] ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification(@Zhejiang University etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.05 | 🔥[MiniCache] MiniCache: KV Cache Compression in Depth Dimension for Large Language Models(@ZIP Lab) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.05 | 🔥[CacheBlend] CacheBlend: Fast Large Language Model Serving with Cached Knowledge Fusion(@University of Chicago) | [pdf] | [LMCache] | ⭐️⭐️ |
2024.06 | 🔥[CompressKV] Effectively Compress KV Heads for LLM(@alibaba etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.06 | 🔥[MemServe] MemServe: Context Caching for Disaggregated LLM Serving with Elastic Memory Pool(@Huawei Cloud etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.07 | 🔥[MLKV] MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding(@Institut Teknologi Bandung) | [pdf] | [pythia-mlkv] | ⭐️ |
2024.07 | 🔥[ThinK] ThinK: Thinner Key Cache by Query-Driven Pruning(@Salesforce AI Research etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.07 | 🔥[Palu] Palu: Compressing KV-Cache with Low-Rank Projection(@nycu.edu.tw) | [pdf] | [Palu] | ⭐️⭐️ |
2024.08 | 🔥[Zero-Delay QKV Compression] Zero-Delay QKV Compression for Mitigating KV Cache and Network Bottlenecks in LLM Inference(@University of Virginia) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥[AlignedKV] AlignedKV: Reducing Memory Access of KV-Cache with Precision-Aligned Quantization(@Tsinghua University) | [pdf] | [AlignedKV] | ⭐️ |
2024.10 | 🔥[LayerKV] Optimizing Large Language Model Serving with Layer-wise KV Cache Management(@Ant Group) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.10 | 🔥[AdaKV] Ada-KV: Optimizing KV Cache Eviction by Adaptive Budget Allocation for Efficient LLM Inference (@USTC) | [pdf] | [AdaKV] | ⭐️⭐️ |
📖Prompt/Context/KV Compression (©️back👆🏻)
<div id="Context-Compression"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2023.04 | 🔥[Selective-Context] Compressing Context to Enhance Inference Efficiency of Large Language Models(@Surrey) | [pdf] | Selective-Context | ⭐️⭐️ |
2023.05 | [AutoCompressor] Adapting Language Models to Compress Contextss(@Princeton) | [pdf] | AutoCompressor | ⭐️ |
2023.10 | 🔥[LLMLingua] LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models(@Microsoft) | [pdf] | LLMLingua | ⭐️⭐️ |
2023.10 | 🔥🔥[LongLLMLingua] LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression(@Microsoft) | [pdf] | LLMLingua | ⭐️⭐️ |
2024.03 | 🔥[LLMLingua-2] LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression(@Microsoft) | [pdf] | LLMLingua series | ⭐️ |
2024.08 | 🔥🔥[500xCompressor] 500xCompressor: Generalized Prompt Compression for Large Language Models(@University of Cambridge) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.08 | 🔥🔥[Eigen Attention] Eigen Attention: Attention in Low-Rank Space for KV Cache Compression(@purdue.edu) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥🔥[Prompt Compression] Prompt Compression with Context-Aware Sentence Encoding for Fast and Improved LLM Inference(@Alterra AI) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥🔥[Context Distillation] Efficient LLM Context Distillation(@gatech.edu) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥🔥[CRITIPREFILL] CRITIPREFILL: A SEGMENT-WISE CRITICALITYBASED APPROACH FOR PREFILLING ACCELERATION IN LLMS(@OPPO) | [pdf] | CritiPrefill | ⭐️ |
2024.10 | 🔥🔥[KV-COMPRESS] PAGED KV-CACHE COMPRESSION WITH VARIABLE COMPRESSION RATES PER ATTENTION HEAD(@Cloudflare, inc.) | [pdf] | vllm-kvcompress | ⭐️⭐️ |
2024.10 | 🔥🔥[LORC] Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy(@gatech.edu) | [pdf] | ⚠️ | ⭐️⭐️ |
📖Long Context Attention/KV Cache Optimization (©️back👆🏻)
<div id="Long-Context-Attention-KVCache"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2023.05 | 🔥🔥[Blockwise Attention] Blockwise Parallel Transformer for Large Context Models(@UC Berkeley) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.05 | 🔥[Landmark Attention] Random-Access Infinite Context Length for Transformers(@epfl.ch) | [pdf] | landmark-attention | ⭐️⭐️ |
2023.07 | 🔥[LightningAttention-1] TRANSNORMERLLM: A FASTER AND BETTER LARGE LANGUAGE MODEL WITH IMPROVED TRANSNORMER(@OpenNLPLab) | [pdf] | TransnormerLLM | ⭐️⭐️ |
2023.07 | 🔥[LightningAttention-2] Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models(@OpenNLPLab) | [pdf] | lightning-attention | ⭐️⭐️ |
2023.10 | 🔥🔥[RingAttention] Ring Attention with Blockwise Transformers for Near-Infinite Context(@UC Berkeley) | [pdf] | [RingAttention] | ⭐️⭐️ |
2023.11 | 🔥[HyperAttention] HyperAttention: Long-context Attention in Near-Linear Time(@yale&Google) | [pdf] | hyper-attn | ⭐️⭐️ |
2023.11 | [Streaming Attention] One Pass Streaming Algorithm for Super Long Token Attention Approximation in Sublinear Space(@Adobe Research etc) | [pdf] | ⚠️ | ⭐️ |
2023.11 | 🔥[Prompt Cache] PROMPT CACHE: MODULAR ATTENTION REUSE FOR LOW-LATENCY INFERENCE(@Yale University etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.11 | 🔥🔥[StripedAttention] STRIPED ATTENTION: FASTER RING ATTENTION FOR CAUSAL TRANSFORMERS(@MIT etc) | [pdf] | [striped_attention] | ⭐️⭐️ |
2024.01 | 🔥🔥[KVQuant] KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization(@UC Berkeley) | [pdf] | [KVQuant] | ⭐️⭐️ |
2024.02 | 🔥[RelayAttention] RelayAttention for Efficient Large Language Model Serving with Long System Prompts(@sensetime.com etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.04 | 🔥🔥[Infini-attention] Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention(@Google) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.04 | 🔥🔥[RAGCache] RAGCache: Efficient Knowledge Caching for Retrieval-Augmented Generation(@Peking University&ByteDance Inc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.04 | 🔥🔥[KCache] EFFICIENT LLM INFERENCE WITH KCACHE(@Qiaozhi He, Zhihua Wu) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.05 | 🔥🔥[YOCO] You Only Cache Once: Decoder-Decoder Architectures for Language Models(@Microsoft) | [pdf] | [unilm-YOCO] | ⭐️⭐️ |
2024.05 | 🔥🔥[SKVQ] SKVQ: Sliding-window Key and Value Cache Quantization for Large Language Models(@Shanghai AI Laboratory) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.05 | 🔥🔥[CLA] Reducing Transformer Key-Value Cache Size with Cross-Layer Attention(@MIT-IBM) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.06 | 🔥[LOOK-M] LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference(@osu.edu etc) | [pdf] | [LOOK-M] | ⭐️⭐️ |
2024.06 | 🔥🔥[MInference] MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention(@Microsoft etc) | [pdf] | [MInference] | ⭐️⭐️ |
2024.06 | 🔥🔥[InfiniGen] InfiniGen: Efficient Generative Inference of Large Language Models with Dynamic KV Cache Management(@snu) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.06 | 🔥🔥[Quest] Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference(@mit-han-lab etc) | [pdf] | [Quest] | ⭐️⭐️ |
2024.07 | 🔥[PQCache] PQCache: Product Quantization-based KVCache for Long Context LLM Inference(@PKU etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.08 | 🔥[SentenceVAE] SentenceVAE: Faster, Longer and More Accurate Inference with Next-sentence Prediction for Large Language Models(@TeleAI) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥[InstInfer] InstInfer: In-Storage Attention Offloading for Cost-Effective Long-Context LLM Inference(@PKU etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥[RetrievalAttention] RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval(@microsoft.com) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.10 | 🔥[ShadowKV] ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference(@CMU & bytedance) | [pdf] | [ShadowKV] | ⭐️⭐️ |
📖Early-Exit/Intermediate Layer Decoding (©️back👆🏻)
<div id="Early-Exit"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2020.04 | [DeeBERT] DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference(@uwaterloo.ca) | [pdf] | ⚠️ | ⭐️ |
2020.04 | [FastBERT] FastBERT: a Self-distilling BERT with Adaptive Inference Time(@PKU) | [pdf] | [FastBERT] | ⭐️ |
2021.06 | [BERxiT] BERxiT: Early Exiting for BERT with Better Fine-Tuning and Extension to Regression(@uwaterloo.ca) | [pdf] | [berxit] | ⭐️ |
2023.06 | 🔥[SkipDecode] SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference(@Microsoft) | [pdf] | ⚠️ | ⭐️ |
2023.10 | 🔥[LITE] Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via Instruction Tuning with LITE(@Arizona State University) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.12 | 🔥🔥[EE-LLM] EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism(@alibaba-inc.com) | [pdf] | [EE-LLM] | ⭐️⭐️ |
2023.10 | 🔥[FREE] Fast and Robust Early-Exiting Framework for Autoregressive Language Models with Synchronized Parallel Decoding(@KAIST AI&AWS AI) | [pdf] | [fast_robust_early_exit] | ⭐️⭐️ |
2024.02 | 🔥[EE-Tuning] EE-Tuning: An Economical yet Scalable Solution for Tuning Early-Exit Large Language Models(@alibaba-inc.com) | [pdf] | [EE-Tuning] | ⭐️⭐️ |
2024.07 | [Skip Attention] Attention Is All You Need But You Don’t Need All Of It For Inference of Large Language Models(@University College London) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.08 | [KOALA] KOALA: Enhancing Speculative Decoding for LLM via Multi-Layer Draft Heads with Adversarial Learning(@Dalian University) | [pdf] | ⚠️ | ⭐️⭐️ |
📖Parallel Decoding/Sampling (©️back👆🏻)
<div id="Parallel-Decoding-Sampling"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2018.11 | 🔥[Parallel Decoding] Blockwise Parallel Decoding for Deep Autoregressive Models(@Berkeley&Google) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.02 | 🔥[Speculative Sampling] Accelerating Large Language Model Decoding with Speculative Sampling(@DeepMind) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.05 | 🔥[Speculative Sampling] Fast Inference from Transformers via Speculative Decoding(@Google Research etc) | [pdf] | [LLMSpeculativeSampling] | ⭐️⭐️ |
2023.09 | 🔥[Medusa] Medusa: Simple Framework for Accelerating LLM Generation with Multiple Decoding Heads(@Tianle Cai etc) | [pdf] | [Medusa] | ⭐️⭐️ |
2023.10 | [OSD] Online Speculative Decoding(@UC Berkeley etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2023.12 | [Cascade Speculative] Cascade Speculative Drafting for Even Faster LLM Inference(@illinois.edu) | [pdf] | ⚠️ | ⭐️ |
2024.02 | 🔥[LookaheadDecoding] Break the Sequential Dependency of LLM Inference Using LOOKAHEAD DECODING(@UCSD&Google&UC Berkeley) | [pdf] | [LookaheadDecoding] | ⭐️⭐️ |
2024.02 | 🔥🔥[Speculative Decoding] Decoding Speculative Decoding(@cs.wisc.edu) | [pdf] | Decoding Speculative Decoding | ⭐️ |
2024.04 | 🔥🔥[TriForce] TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding(@cmu.edu&Meta AI) | [pdf] | [TriForce] | ⭐️⭐️ |
2024.04 | 🔥🔥[Hidden Transfer] Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration(@pku.edu.cn etc) | [pdf] | ⚠️ | ⭐️ |
2024.05 | 🔥[Instructive Decoding] INSTRUCTIVE DECODING: INSTRUCTION-TUNED LARGE LANGUAGE MODELS ARE SELF-REFINER FROM NOISY INSTRUCTIONS(@KAIST AI) | [pdf] | [Instructive-Decoding] | ⭐️ |
2024.05 | 🔥[S3D] S3D: A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs(@lge.com) | [pdf] | ⚠️ | ⭐️ |
2024.06 | 🔥[Parallel Decoding] Exploring and Improving Drafts in Blockwise Parallel Decoding(@KAIST&Google Research) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.07 | 🔥[Multi-Token Speculative Decoding] Multi-Token Joint Speculative Decoding for Accelerating Large Language Model Inference(@University of California, etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.08 | 🔥[Token Recycling] Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling(@ir.hit.edu.cn etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.08 | 🔥[Speculative Decoding] Parallel Speculative Decoding with Adaptive Draft Length(@USTC etc) | [pdf] | [PEARL] | ⭐️⭐️ |
2024.08 | 🔥[FocusLLM] FocusLLM: Scaling LLM’s Context by Parallel Decoding(@Tsinghua University etc) | [pdf] | [FocusLLM] | ⭐️ |
2024.08 | 🔥[MagicDec] MagicDec: Breaking the Latency-Throughput Tradeoff for Long Context Generation with Speculative Decoding(@CMU etc) | [pdf] | [MagicDec] | ⭐️ |
2024.08 | 🔥[Speculative Decoding] Boosting Lossless Speculative Decoding via Feature Sampling and Partial Alignment Distillation(@BIT) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.09 | 🔥[Hybrid Inference] Efficient Hybrid Inference for LLMs: Reward-Based Token Modelling with Selective Cloud Assistance | [pdf] | ⚠️ | ⭐️⭐️ |
2024.10 | 🔥[PARALLELSPEC] PARALLELSPEC: PARALLEL DRAFTER FOR EFFICIENT SPECULATIVE DECODING(@Tencent AI Lab etc) | [pdf] | ⚠️ | ⭐️⭐️ |
2024.10 | 🔥[Fast Best-of-N] Fast Best-of-N Decoding via Speculative Rejection(@CMU etc) | [pdf] | ⚠️ | ⭐️⭐️ |
📖Structured Prune/KD/Weight Sparse (©️back👆🏻)
<div id="Structured_Pruning_KD_Weight_Sparse"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2023.12 | [FLAP] Fluctuation-based Adaptive Structured Pruning for Large Language Models(@Chinese Academy of Sciences etc) | [pdf] | [FLAP] | ⭐️⭐️ |
2023.12 | 🔥[LASER] The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction(@mit.edu) | [pdf] | [laser] | ⭐️⭐️ |
2023.12 | [PowerInfer] PowerInfer: Fast Large Language Model Serving with a Consumer-grade GPU(@SJTU) | [pdf] | [PowerInfer] | ⭐️ |
2024.01 | [Admm Pruning] Fast and Optimal Weight Update for Pruned Large Language Models(@fmph.uniba.sk) | [pdf] | [admm-pruning] | ⭐️ |
2024.01 | [FFSplit] FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency Trade-off in Language Model Inference(@1Rice University etc) | [pdf] | ⚠️ | ⭐️ |
📖Mixture-of-Experts(MoE) LLM Inference (©️back👆🏻)
<div id="Mixture_of_Experts_LLM_Inference"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2022.11 | 🔥[WINT8/4] Who Says Elephants Can’t Run: Bringing Large Scale MoE Models into Cloud Scale Production(@NVIDIA&Microsoft) | [pdf] | [FasterTransformer] | ⭐️⭐️ |
2023.12 | 🔥 [Mixtral Offloading] Fast Inference of Mixture-of-Experts Language Models with Offloading(@Moscow Institute of Physics and Technology etc) | [pdf] | [mixtral-offloading] | ⭐️⭐️ |
2024.01 | [MoE-Mamba] MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts(@uw.edu.pl) | [pdf] | ⚠️ | ⭐️ |
2024.04 | [MoE Inference] Toward Inference-optimal Mixture-of-Expert Large Language Models(@UC San Diego etc) | [pdf] | ⚠️ | ⭐️ |
2024.05 | 🔥🔥🔥[DeepSeek-V2] DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model(@DeepSeek-AI) | [pdf] | [DeepSeek-V2] | ⭐️⭐️ |
2024.06 | [MoE] A Survey on Mixture of Experts(@HKU) | [pdf] | ⚠️ | ⭐️ |
📖CPU/Single GPU/FPGA/NPU/Mobile Inference (©️back👆🏻)
<div id="CPU-Single-GPU-Inference"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2023.03 | [FlexGen] High-Throughput Generative Inference of Large Language Models with a Single GPU(@Stanford University etc) | [pdf] | [FlexGen] | ⭐️ |
2023.11 | [LLM CPU Inference] Efficient LLM Inference on CPUs(@intel) | [pdf] | [intel-extension-for-transformers] | ⭐️ |
2023.12 | [LinguaLinked] LinguaLinked: A Distributed Large Language Model Inference System for Mobile Devices(@University of California Irvine) | [pdf] | ⚠️ | ⭐️ |
2023.12 | [OpenVINO] Leveraging Speculative Sampling and KV-Cache Optimizations Together for Generative AI using OpenVINO(@Haim Barad etc) | [pdf] | ⚠️ | ⭐️ |
2024.03 | [FlightLLM] FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGAs(@Infinigence-AI) | [pdf] | ⚠️ | ⭐️ |
2024.03 | [Transformer-Lite] Transformer-Lite: High-efficiency Deployment of Large Language Models on Mobile Phone GPUs(@OPPO) | [pdf] | ⚠️ | ⭐️ |
2024.07 | 🔥🔥[xFasterTransformer] Inference Performance Optimization for Large Language Models on CPUs(@Intel) | [pdf] | [xFasterTransformer] | ⭐️ |
2024.07 | [Summary] Inference Optimization of Foundation Models on AI Accelerators(@AWS AI) | [pdf] | ⚠️ | ⭐️ |
2024.10 | Large Language Model Performance Benchmarking on Mobile Platforms: A Thorough Evaluation(@SYSU) | [pdf] | ⚠️ | ⭐️ |
2024.10 | 🔥🔥[FastAttention] FastAttention: Extend FlashAttention2 to NPUs and Low-resource GPUs for Efficient Inference(@huawei etc) | [pdf] | ⚠️ | ⭐️ |
📖Non Transformer Architecture (©️back👆🏻)
<div id="Non-Transformer-Architecture"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2023.05 | 🔥🔥[RWKV] RWKV: Reinventing RNNs for the Transformer Era(@Bo Peng etc) | [pdf] | [RWKV-LM] | ⭐️⭐️ |
2023.12 | 🔥🔥[Mamba] Mamba: Linear-Time Sequence Modeling with Selective State Spaces(@cs.cmu.edu etc) | [pdf] | [mamba] | ⭐️⭐️ |
2024.06 | 🔥🔥[RWKV-CLIP] RWKV-CLIP: A Robust Vision-Language Representation Learner(@DeepGlint etc) | [pdf] | [RWKV-CLIP] | ⭐️⭐️ |
2024.08 | 🔥🔥[Kraken] Kraken: Inherently Parallel Transformers For Efficient Multi-Device Inference(@Princeton) | [pdf] | ⚠️ | ⭐️ |
2024.08 | 🔥🔥[FLA] FLA: A Triton-Based Library for Hardware-Efficient Implementations of Linear Attention Mechanism(@sustcsonglin) | [docs] | [flash-linear-attention] | ⭐️⭐️ |
📖GEMM/Tensor Cores/MMA/Parallel (©️back👆🏻)
<div id="GEMM-Tensor-Cores-WMMA"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2018.03 | 🔥🔥[Tensor Core] NVIDIA Tensor Core Programmability, Performance & Precision(@KTH Royal etc) | [pdf] | ⚠️ | ⭐️ |
2021.05 | 🔥[Intra-SM Parallelism] Exploiting Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks(@sjtu.edu.cn) | [pdf] | ⚠️ | ⭐️ |
2022.06 | [Microbenchmark] Dissecting Tensor Cores via Microbenchmarks: Latency, Throughput and Numeric Behaviors(@tue.nl etc) | [pdf] | [DissectingTensorCores] | ⭐️ |
2022.09 | 🔥🔥[FP8] FP8 FORMATS FOR DEEP LEARNING(@NVIDIA) | [pdf] | ⚠️ | ⭐️ |
2023.08 | 🔥[Tensor Cores] Reducing shared memory footprint to leverage high throughput on Tensor Cores and its flexible API extension library(@Tokyo Institute etc) | [pdf] | [wmma_extension] | ⭐️ |
2023.03 | 🔥🔥[cutlass/cute] Graphene: An IR for Optimized Tensor Computations on GPUs(@NVIDIA) | [pdf] | [cutlass] | ⭐️ |
2024.02 | [QUICK] QUICK: Quantization-aware Interleaving and Conflict-free Kernel for efficient LLM inference(@SqueezeBits Inc) | [pdf] | [QUICK] | ⭐️⭐️ |
2024.02 | [Tensor Parallel] TP-AWARE DEQUANTIZATION(@IBM T.J. Watson Research Center) | [pdf] | ⚠️ | ⭐️ |
2024.07 | 🔥🔥[flute] Fast Matrix Multiplications for Lookup Table-Quantized LLMs(@mit.edu etc) | [pdf] | [flute] | ⭐️⭐️ |
2024.08 | 🔥🔥[LUT TENSOR CORE] LUT TENSOR CORE: Lookup Table Enables Efficient Low-Bit LLM Inference Acceleration(@SJTU&PKU etc) | [pdf] | ⚠️ | ⭐️ |
2024.08 | 🔥🔥[MARLIN] MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models(@ISTA) | [pdf] | [marlin] | ⭐️⭐️ |
2024.08 | 🔥🔥[SpMM] High Performance Unstructured SpMM Computation Using Tensor Cores(@ETH Zurich) | [pdf] | ⚠️ | ⭐️ |
2024.09 | 🔥🔥[TEE]Confidential Computing on nVIDIA H100 GPU: A Performance Benchmark Study(@phala.network) | [pdf] | ⚠️ | ⭐️ |
2024.09 | 🔥🔥[HiFloat8] Ascend HiFloat8 Format for Deep Learning(@Huawei) | [pdf] | ⚠️ | ⭐️ |
2024.09 | 🔥🔥[Tensor Cores] Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores(@nju.edu.cn) | [pdf] | ⚠️ | ⭐️ |
2024.07 | 🔥🔥[Tensor Product] Acceleration of Tensor-Product Operations with Tensor Cores(@Heidelberg University) | [pdf] | ⚠️ | ⭐️ |
📖VLM/Position Embed/Others (©️back👆🏻)
<div id="Others"></div>Date | Title | Paper | Code | Recom |
---|---|---|---|---|
2021.04 | 🔥[RoPE] ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING(@Zhuiyi Technology Co., Ltd.) | [pdf] | [transformers] | ⭐️ |
2022.10 | [ByteTransformer] A High-Performance Transformer Boosted for Variable-Length Inputs(@ByteDance&NVIDIA) | [pdf] | [ByteTransformer] | ⭐️ |
2024.09 | 🔥[Inf-MLLM] Inf-MLLM: Efficient Streaming Inference of Multimodal Large Language Models on a Single GPU(@sjtu) | [pdf] | ⚠️ | ⭐️ |
©️License
GNU General Public License v3.0
🎉Contribute
Welcome to star & submit a PR to this repo!
<!-- <div align='center'> <img width="450" height="250" alt="v02" src="https://github.com/DefTruth/LLMs-Inference-Papers/assets/31974251/bb136842-8054-4599-8bfe-36c36f0e997f"> <a href="https://star-history.com/#DefTruth/Awesome-LLM-Inference&Date"> <picture align='center'> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=DefTruth/Awesome-LLM-Inference&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=DefTruth/Awesome-LLM-Inference&type=Date" /> <img width="350" height="250" alt="Star History Chart" src="https://api.star-history.com/svg?repos=DefTruth/Awesome-LLM-Inference&type=Date" /> </picture> </a> </div> -->