Awesome
ByteTransformer: Optimized BERT Transformer Inference on NVIDIA GPUs
Introduction
ByteTransformer is a high-performance inference library for BERT-like transformers that offers the following features:
- Provides Python and C++ APIs, with the PyTorch plugin allowing users to enhance transformer inference with just a few lines of Python code.
- Supports both fixed-length and variable-length transformers.
- Includes end-to-end architectural-aware optimizations for the padding-free algorithm on BERT routines, including QKV encoding, softmax, feed forward network, activation, layernorm, and multi-head attention.
ByteTransformer has been widely deployed to improve in-house transformer inference serving systems at ByteDance, delivering superior performance over other transformer implementations for both fixed-length and variable-length inputs. The technical details have been published at IEEE IPDPS 2023.
Cite Us
If you use our library, please cite our research paper.
@article{zhai2022bytetransformer,
title={ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs},
author={Zhai, Yujia and Jiang, Chengquan and Wang, Leyuan and Jia, Xiaoying and Zhang, Shang and Chen, Zizhong and Liu, Xin and Zhu, Yibo},
journal={arXiv preprint arXiv:2210.03052},
year={2022}
}
Performance and Speedup
We compared ByteTransformer with PyTorch, TensorFlow, FasterTransformer, and DeepSpeed on an A100 GPU. The benchmark script is available in benchmark/bert_bench.sh.
1. Standard BERT batch size = 1, average sequence length = 0.6 * maximal, execution time in millisecond:
PyTorch | Tensorflow | FasterTransformer | FasterTransformer with remove padding | DeepSpeed | ByteTransformer | |
---|---|---|---|---|---|---|
64 | 2.93 | 2.46 | 1.05 | 1.23 | 1.17 | 0.90 |
128 | 3.18 | 2.6 | 1.10 | 1.43 | 1.28 | 0.97 |
192 | 3.18 | 2.81 | 1.26 | 1.43 | 1.40 | 1.36 |
256 | 2.81 | 2.9 | 1.35 | 1.55 | 1.51 | 1.43 |
320 | 3.11 | 3.24 | 1.63 | 1.66 | 1.84 | 1.69 |
384 | 2.87 | 3.43 | 1.64 | 1.64 | 1.95 | 1.72 |
448 | 2.99 | 3.61 | 2.26 | 2.35 | 2.23 | 1.86 |
512 | 2.89 | 3.74 | 2.28 | 2.43 | 2.37 | 2.00 |
576 | 2.99 | 4.03 | 2.51 | 2.59 | 2.70 | 2.19 |
640 | 2.99 | 4.54 | 2.85 | 2.83 | 3.17 | 2.23 |
704 | 3.21 | 4.67 | 3.16 | 3.44 | 3.32 | 2.47 |
768 | 3.33 | 4.88 | 3.26 | 3.63 | 3.46 | 2.51 |
832 | 3.78 | 5.39 | 3.75 | 3.87 | 3.97 | 2.80 |
896 | 3.86 | 5.81 | 4.08 | 4.95 | 4.37 | 2.86 |
960 | 4.02 | 6.27 | 4.30 | 5.23 | 4.66 | 3.12 |
1024 | 4.2 | 6.37 | 4.51 | 4.96 | 4.86 | 3.16 |
2. Standard BERT batch size = 16, average sequence length = 0.6 * maximal, execution time in millisecond:
PyTorch | Tensorflow | FasterTransformer | FasterTransformer with remove padding | DeepSpeed | ByteTransformer | |
---|---|---|---|---|---|---|
64 | 3.2 | 4.57 | 2.24 | 1.93 | 2.81 | 2.09 |
128 | 4.97 | 6.97 | 3.62 | 3.33 | 4.54 | 3.18 |
192 | 7.65 | 9.37 | 5.26 | 5.29 | 6.68 | 5.08 |
256 | 9.56 | 12.17 | 6.77 | 5.49 | 9.03 | 6.85 |
320 | 13.21 | 15.87 | 8.85 | 6.47 | 12.81 | 7.49 |
384 | 15.01 | 18.56 | 10.37 | 7.05 | 15.19 | 8.44 |
448 | 19.06 | 23.01 | 15.97 | 12.54 | 18.83 | 8.89 |
512 | 21 | 26.03 | 18.03 | 13.79 | 21.55 | 9.22 |
576 | 24.33 | 31.24 | 21.11 | 17.65 | 26.2 | 10.15 |
640 | 28.03 | 35.07 | 24.52 | 20.34 | 30.24 | 12.04 |
704 | 32.33 | 41.43 | 28.94 | 24.52 | 34.65 | 13.55 |
768 | 35.31 | 44.62 | 32.09 | 28.21 | 37.95 | 16.3 |
832 | 40.75 | 51.87 | 36.33 | 31.69 | 45.32 | 16.92 |
896 | 44.47 | 55.65 | 42.17 | 38.05 | 49.48 | 20.67 |
960 | 49.72 | 63.59 | 47.01 | 42.98 | 55.72 | 23.27 |
1024 | 53.21 | 65.94 | 50.28 | 45.22 | 59.96 | 24.70 |
Supported Models
Currently, only the standard BERT transformer encoder is available under this repository.
Environment requirements
- CUDA: 11.6
- CMake: >= 3.13
- PyTorch: >= 1.8
- GPU compute capability: 7.0(V100) / 7.5(T4) or 8.0(A100)
- Python: >= 3.7
Tested on: A100 + CUDA 11.6 + PyTorch 1.13.0+cu116 + Python 3.9.16
Building from Source
To build from source, run the following commands:
git submodule update --init
mkdir build && cd build
cmake -DTORCH_CUDA_ARCH_LIST="8.0" -DDataType=FP16 -DBUILD_THS=ON -DCUDAARCHS="80" ..
make
Getting Started with Unit Tests
Unit Tests in C++
To generate test data, run the following code:
cd build
# batch sz = 16, seqlen = 64, head num = 12, head sz = 64, avg seqlen = 32
python3 bert_transformer_test.py 16 64 12 64 --avg_seqlen 32 --dtype fp16 --export_data
Here, 16
, 64
, 12
, and 64
represent batch size, sequence length, number of heads, and head size, respectively. The --avg_seqlen 32
flag is used to set the average sequence length, --dtype fp16
sets the data type, and --export_data
exports the test data.
After test data is generated (*.in
and *.out
files are saved under the current directory), run the following command:
./bin/bert_transformer_test 16 64 12 64
Here, the arguments represent the same parameters as used in generating the test data.
Unit Tests in a PyTorch Plugin in Python
To perform the unit tests in a PyTorch plugin in Python, use the same script as for C++, but without the --export_data
flag. Run the following command in the terminal:
# batch sz = 16, seqlen = 64, head num = 12, head sz = 64, avg seqlen = 32
python3 bert_transformer_test.py 16 64 12 64 --avg_seqlen 32 --dtype fp16
Again, the arguments represent the same parameters as used in generating the test data.
Benchmark
cd build
../benchmark/bert_bench.sh