Awesome
<div align="center">Intel® Extension for Transformers
<h3>An Innovative Transformer-based Toolkit to Accelerate GenAI/LLM Everywhere</h3>🏭Architecture | 💬NeuralChat | 😃Inference on CPU | 😃Inference on GPU | 💻Examples | 📖Documentations
</div>🚀Latest News
- [2024/06] Support Qwen2, please find the details in Blog
- [2024/04] Support the launch of Meta Llama 3, the next generation of Llama models. Check out Accelerate Meta* Llama 3 with Intel AI Solutions.
- [2024/04] Demonstrated the chatbot in 4th, 5th, and 6th Gen Xeon Scalable Processors in Intel Vision Pat's Keynote.
- [2024/04] Supported INT4 inference on Intel Meteor Lake.
- [2024/04] Achieved a 1.8x performance improvement in GPT-J inference on the 5th Gen Xeon MLPerf v4.0 submission compared to v3.1. News, Results.
- [2024/01] Supported INT4 inference on Intel GPUs including Intel Data Center GPU Max Series (e.g., PVC) and Intel Arc A-Series (e.g., ARC). Check out the examples and scripts.
- [2024/01] Demonstrated Intel Hybrid Copilot in CES 2024 Great Minds Session "Bringing the Limitless Potential of AI Everywhere".
- [2023/12] Supported QLoRA on CPUs to make fine-tuning on client CPU possible. Check out the blog and readme for more details.
- [2023/11] Released top-1 7B-sized LLM NeuralChat-v3-1 and DPO dataset. Check out the nice video published by WorldofAI.
- [2023/11] Published a 4-bit chatbot demo (based on NeuralChat) available on Intel Hugging Face Space. Welcome to have a try! To setup the demo locally, please follow the instructions.
<div align="left">
🏃Installation
Quick Install from Pypi
pip install intel-extension-for-transformers
For system requirements and other installation tips, please refer to Installation Guide
🌟Introduction
Intel® Extension for Transformers is an innovative toolkit designed to accelerate GenAI/LLM everywhere with the optimal performance of Transformer-based models on various Intel platforms, including Intel Gaudi2, Intel CPU, and Intel GPU. The toolkit provides the below key features and examples:
-
Seamless user experience of model compressions on Transformer-based models by extending Hugging Face transformers APIs and leveraging Intel® Neural Compressor
-
Advanced software optimizations and unique compression-aware runtime (released with NeurIPS 2022's paper Fast Distilbert on CPUs and QuaLA-MiniLM: a Quantized Length Adaptive MiniLM, and NeurIPS 2021's paper Prune Once for All: Sparse Pre-Trained Language Models)
-
Optimized Transformer-based model packages such as Stable Diffusion, GPT-J-6B, GPT-NEOX, BLOOM-176B, T5, Flan-T5, and end-to-end workflows such as SetFit-based text classification and document level sentiment analysis (DLSA)
-
NeuralChat, a customizable chatbot framework to create your own chatbot within minutes by leveraging a rich set of plugins such as Knowledge Retrieval, Speech Interaction, Query Caching, and Security Guardrail. This framework supports Intel Gaudi2/CPU/GPU.
-
Inference of Large Language Model (LLM) in pure C/C++ with weight-only quantization kernels for Intel CPU and Intel GPU (TBD), supporting GPT-NEOX, LLAMA, MPT, FALCON, BLOOM-7B, OPT, ChatGLM2-6B, GPT-J-6B, and Dolly-v2-3B. Support AMX, VNNI, AVX512F and AVX2 instruction set. We've boosted the performance of Intel CPUs, with a particular focus on the 4th generation Intel Xeon Scalable processor, codenamed Sapphire Rapids.
🔓Validated Hardware
<table> <tbody> <tr> <td rowspan="2">Hardware</td> <td colspan="2">Fine-Tuning</td> <td colspan="2">Inference</td> </tr> <tr> <td>Full</td> <td>PEFT</td> <td>8-bit</td> <td>4-bit</td> </tr> <tr> <td>Intel Gaudi2</td> <td>✔</td> <td>✔</td> <td>WIP (FP8)</td> <td>-</td> </tr> <tr> <td>Intel Xeon Scalable Processors</td> <td>✔</td> <td>✔</td> <td>✔ (INT8, FP8)</td> <td>✔ (INT4, FP4, NF4)</td> </tr> <tr> <td>Intel Xeon CPU Max Series</td> <td>✔</td> <td>✔</td> <td>✔ (INT8, FP8)</td> <td>✔ (INT4, FP4, NF4)</td> </tr> <tr> <td>Intel Data Center GPU Max Series</td> <td>WIP </td> <td>WIP </td> <td>WIP (INT8)</td> <td>✔ (INT4)</td> </tr> <tr> <td>Intel Arc A-Series</td> <td>-</td> <td>-</td> <td>WIP (INT8)</td> <td>✔ (INT4)</td> </tr> <tr> <td>Intel Core Processors</td> <td>-</td> <td>✔</td> <td>✔ (INT8, FP8)</td> <td>✔ (INT4, FP4, NF4)</td> </tr> </tbody> </table>In the table above, "-" means not applicable or not started yet.
🔓Validated Software
<table> <tbody> <tr> <td rowspan="2">Software</td> <td colspan="2">Fine-Tuning</td> <td colspan="2">Inference</td> </tr> <tr> <td>Full</td> <td>PEFT</td> <td>8-bit</td> <td>4-bit</td> </tr> <tr> <td>PyTorch</td> <td>2.0.1+cpu,</br> 2.0.1a0 (gpu)</td> <td>2.0.1+cpu,</br> 2.0.1a0 (gpu)</td> <td>2.1.0+cpu,</br> 2.0.1a0 (gpu)</td> <td>2.1.0+cpu,</br> 2.0.1a0 (gpu)</td> </tr> <tr> <td>Intel® Extension for PyTorch</td> <td>2.1.0+cpu,</br> 2.0.110+xpu</td> <td>2.1.0+cpu,</br> 2.0.110+xpu</td> <td>2.1.0+cpu,</br> 2.0.110+xpu</td> <td>2.1.0+cpu,</br> 2.0.110+xpu</td> </tr> <tr> <td>Transformers</td> <td>4.35.2(CPU),</br> 4.31.0 (Intel GPU)</td> <td>4.35.2(CPU),</br> 4.31.0 (Intel GPU)</td> <td>4.35.2(CPU),</br> 4.31.0 (Intel GPU)</td> <td>4.35.2(CPU),</br> 4.31.0 (Intel GPU)</td> </tr> <tr> <td>Synapse AI</td> <td>1.13.0</td> <td>1.13.0</td> <td>1.13.0</td> <td>1.13.0</td> </tr> <tr> <td>Gaudi2 driver</td> <td>1.13.0-ee32e42</td> <td>1.13.0-ee32e42</td> <td>1.13.0-ee32e42</td> <td>1.13.0-ee32e42</td> </tr> <tr> <td>intel-level-zero-gpu</td> <td>1.3.26918.50-736~22.04 </td> <td>1.3.26918.50-736~22.04 </td> <td>1.3.26918.50-736~22.04 </td> <td>1.3.26918.50-736~22.04 </td> </tr> </tbody> </table>Please refer to the detailed requirements in CPU, Gaudi2, Intel GPU.
🔓Validated OS
Ubuntu 20.04/22.04, Centos 8.
🌱Getting Started
Chatbot
Below is the sample code to create your chatbot. See more examples.
Serving (OpenAI-compatible RESTful APIs)
NeuralChat provides OpenAI-compatible RESTful APIs for chat, so you can use NeuralChat as a drop-in replacement for OpenAI APIs. You can start NeuralChat server either using the Shell command or Python code.
# Shell Command
neuralchat_server start --config_file ./server/config/neuralchat.yaml
# Python Code
from intel_extension_for_transformers.neural_chat import NeuralChatServerExecutor
server_executor = NeuralChatServerExecutor()
server_executor(config_file="./server/config/neuralchat.yaml", log_file="./neuralchat.log")
NeuralChat service can be accessible through OpenAI client library, curl
commands, and requests
library. See more in NeuralChat.
Offline
from intel_extension_for_transformers.neural_chat import build_chatbot
chatbot = build_chatbot()
response = chatbot.predict("Tell me about Intel Xeon Scalable Processors.")
Transformers-based extension APIs
Below is the sample code to use the extended Transformers APIs. See more examples.
INT4 Inference (CPU)
We encourage you to install NeuralSpeed to get the latest features (e.g., GGUF support) of LLM low-bit inference on CPUs. You may also want to use v1.3 without NeuralSpeed by following the document
from transformers import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
model_name = "Intel/neural-chat-7b-v3-1"
prompt = "Once upon a time, there existed a little girl,"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True)
outputs = model.generate(inputs)
You can also load GGUF format model from Huggingface, we only support Q4_0/Q5_0/Q8_0 gguf format for now.
from transformers import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
# Specify the GGUF repo on the Hugginface
model_name = "TheBloke/Llama-2-7B-Chat-GGUF"
# Download the the specific gguf model file from the above repo
gguf_file = "llama-2-7b-chat.Q4_0.gguf"
# make sure you are granted to access this model on the Huggingface.
tokenizer_name = "meta-llama/Llama-2-7b-chat-hf"
prompt = "Once upon a time, there existed a little girl,"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file = gguf_file)
outputs = model.generate(inputs)
You can also load PyTorch Model from Modelscope
Note:require modelscope
from transformers import TextStreamer
from modelscope import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
model_name = "qwen/Qwen-7B" # Modelscope model_id or local model
prompt = "Once upon a time, there existed a little girl,"
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True, model_hub="modelscope")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
streamer = TextStreamer(tokenizer)
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
You can also load the low-bit model quantized by GPTQ/AWQ/RTN/AutoRound algorithm.
from transformers import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM, GPTQConfig
# Hugging Face GPTQ/AWQ model or use local quantize model
model_name = "MODEL_NAME_OR_PATH"
prompt = "Once upon a time, a little girl"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
outputs = model.generate(inputs)
INT4 Inference (GPU)
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer
import torch
device_map = "xpu"
model_name ="Qwen/Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = "Once upon a time, there existed a little girl,"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
device_map=device_map, load_in_4bit=True)
model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, quantization_config=True, device=device_map)
output = model.generate(inputs)
Note: Please refer to the example and script for more details.
Langchain-based extension APIs
Below is the sample code to use the extended Langchain APIs. See more examples.
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain_core.vectorstores import VectorStoreRetriever
from intel_extension_for_transformers.langchain.vectorstores import Chroma
retriever = VectorStoreRetriever(vectorstore=Chroma(...))
retrievalQA = RetrievalQA.from_llm(llm=HuggingFacePipeline(...), retriever=retriever)
🎯Validated Models
You can access the validated models, accuracy and performance from Release data or Medium blog.
📖Documentation
<table> <thead> <tr> <th colspan="8" align="center">OVERVIEW</th> </tr> </thead> <tbody> <tr> <td colspan="4" align="center"><a href="intel_extension_for_transformers/neural_chat">NeuralChat</a></td> <td colspan="4" align="center"><a href="https://github.com/intel/neural-speed/tree/main">Neural Speed</a></td> </tr> <tr> <th colspan="8" align="center">NEURALCHAT</th> </tr> <tr> <td colspan="2" align="center"><a href="intel_extension_for_transformers/neural_chat/docs/notebooks/deploy_chatbot_on_spr.ipynb">Chatbot on Intel CPU</a></td> <td colspan="3" align="center"><a href="intel_extension_for_transformers/neural_chat/docs/notebooks/deploy_chatbot_on_xpu.ipynb">Chatbot on Intel GPU</a></td> <td colspan="3" align="center"><a href="intel_extension_for_transformers/neural_chat/docs/notebooks/deploy_chatbot_on_habana_gaudi.ipynb">Chatbot on Gaudi</a></td> </tr> <tr> <td colspan="4" align="center"><a href="intel_extension_for_transformers/neural_chat/examples/deployment/talkingbot/pc/build_talkingbot_on_pc.ipynb">Chatbot on Client</a></td> <td colspan="4" align="center"><a href="intel_extension_for_transformers/neural_chat/docs/full_notebooks.md">More Notebooks</a></td> </tr> <tr> <th colspan="8" align="center">NEURAL SPEED</th> </tr> <tr> <td colspan="2" align="center"><a href="https://github.com/intel/neural-speed/tree/main/README.md">Neural Speed</a></td> <td colspan="2" align="center"><a href="https://github.com/intel/neural-speed/tree/main/README.md#2-neural-speed-straight-forward">Streaming LLM</a></td> <td colspan="2" align="center"><a href="https://github.com/intel/neural-speed/tree/main/neural_speed/core#support-matrix">Low Precision Kernels</a></td> <td colspan="2" align="center"><a href="https://github.com/intel/neural-speed/tree/main/docs/tensor_parallelism.md">Tensor Parallelism</a></td> </tr> <tr> <th colspan="8" align="center">LLM COMPRESSION</th> </tr> <tr> <td colspan="2" align="center"><a href="docs/smoothquant.md">SmoothQuant (INT8)</a></td> <td colspan="3" align="center"><a href="docs/weightonlyquant.md">Weight-only Quantization (INT4/FP4/NF4/INT8)</a></td> <td colspan="3" align="center"><a href="docs/qloracpu.md">QLoRA on CPU</a></td> </tr> <tr> <th colspan="8" align="center">GENERAL COMPRESSION</th> <tr> <tr> <td colspan="2" align="center"><a href="docs/quantization.md">Quantization</a></td> <td colspan="2" align="center"><a href="docs/pruning.md">Pruning</a></td> <td colspan="2" align="center"><a href="docs/distillation.md">Distillation</a></td> <td align="center" colspan="2"><a href="examples/huggingface/pytorch/text-classification/orchestrate_optimizations/README.md">Orchestration</a></td> </tr> <tr> <td align="center" colspan="2"><a href="docs/data_augmentation.md">Data Augmentation</a></td> <td align="center" colspan="2"><a href="docs/export.md">Export</a></td> <td align="center" colspan="2"><a href="docs/metrics.md">Metrics</a></td> <td align="center" colspan="2"><a href="docs/objectives.md">Objectives</a></td> </tr> <tr> <td align="center" colspan="2"><a href="docs/pipeline.md">Pipeline</a></td> <td align="center" colspan="3"><a href="examples/huggingface/pytorch/question-answering/dynamic/README.md">Length Adaptive</a></td> <td align="center" colspan="3"><a href="docs/examples.md#early-exit">Early Exit</a></td> </tr> <tr> <th colspan="8" align="center">TUTORIALS & RESULTS</a></th> </tr> <tr> <td colspan="2" align="center"><a href="docs/tutorials/README.md">Tutorials</a></td> <td colspan="2" align="center"><a href="https://github.com/intel/neural-speed/blob/main/docs/supported_models.md">LLM List</a></td> <td colspan="2" align="center"><a href="docs/examples.md">General Model List</a></td> <td colspan="2" align="center"><a href="intel_extension_for_transformers/transformers/runtime/docs/validated_model.md">Model Performance</a></td> </tr> </tbody> </table>🙌Demo
- LLM Infinite Inference (up to 4M tokens)
- LLM QLoRA on Client CPU
📃Selected Publications/Events
- Blog published on Huggingface: Building Cost-Efficient Enterprise RAG applications with Intel Gaudi 2 and Intel Xeon (May 2024)
- Blog published on Intel Developer News: Efficient Natural Language Embedding Models with Intel® Extension for Transformers (May 2024)
- Blog published on Techcrunch: Intel and others commit to building open generative AI tools for the enterprise (Apr 2024)
- Video on YouTube: Intel Vision Keynotes 2024 (Apr 2024)
- Blog published on Vectara: Do Smaller Models Hallucinate More? (Apr 2024)
- Blog of Intel Developer News: Use the neural-chat-7b Model for Advanced Fraud Detection: An AI-Driven Approach in Cybersecurity (March 2024)
- CES 2024: CES 2024 Great Minds Keynote: Bringing the Limitless Potential of AI Everywhere: Intel Hybrid Copilot demo (Jan 2024)
- Blog published on Medium: Connect an AI agent with your API: Intel Neural-Chat 7b LLM can replace Open AI Function Calling (Dec 2023)
- NeurIPS'2023 on Efficient Natural Language and Speech Processing: Efficient LLM Inference on CPUs (Nov 2023)
- Blog published on Hugging Face: Intel Neural-Chat 7b: Fine-Tuning on Gaudi2 for Top LLM Performance (Nov 2023)
- Blog published on VMware: AI without GPUs: A Technical Brief for VMware Private AI with Intel (Nov 2023)
Additional Content
Acknowledgements
-
Excellent open-source projects: bitsandbytes, FastChat, fastRAG, ggml, gptq, llama.cpp, lm-evauation-harness, peft, trl, streamingllm and many others.
-
Thanks to all the contributors.
💁Collaborations
Welcome to raise any interesting ideas on model compression techniques and LLM-based chatbot development! Feel free to reach us, and we look forward to our collaborations on Intel Extension for Transformers!