Awesome
Fast and Effective Weight Update for Pruned Large Language Models
Official PyTorch implementation of Fast and Effective Weight Update for Pruned Large Language Models as presented in (https://arxiv.org/abs/2401.02938). This repo is copy of Wanda repository with our additions.
Setup
Installation instructions can be found in INSTALL.md.
Usage
Below is an example command for pruning LLaMA-7B with our method, to achieve unstructured 50% sparsity.
python main.py \
--model baffo32/decapoda-research-llama-7B-hf \
--prune_method admm \
--sparsity_ratio 0.5 \
--sparsity_type unstructured \
--save out/llama_7b/unstructured/admm/
We provide a quick overview of the arguments:
--model
: The identifier for the LLaMA model on the Hugging Face model hub.--cache_dir
: Directory for loading or storing LLM weights. The default isllm_weights
.--prune_method
: We have implemented three pruning methods, namely [magnitude
,wanda
,sparsegpt
,admm
].--sparsity_ratio
: Denotes the percentage of weights to be pruned.--sparsity_type
: Specifies the type of sparsity [unstructured
,2:4
,4:8
].--save
: Specifies the directory where the result will be stored.
For structured N:M sparsity, set the argument --sparsity_type
to "2:4" or "4:8". An illustrative command is provided below:
python main.py \
--model baffo32/decapoda-research-llama-7B-hf \
--prune_method admm \
--sparsity_ratio 0.5 \
--sparsity_type 2:4 \
--save out/llama_7b/2-4/admm/
Pruning LLaMA-2
For LLaMA-2 models, replace --model
with meta-llama/Llama-2-7b-hf
(take 7b
as an example):
python main.py \
--model meta-llama/Llama-2-7b-hf \
--prune_method admm \
--sparsity_ratio 0.5 \
--sparsity_type unstructured \
--save out/llama2_7b/unstructured/admm/
Zero-Shot Evaluation
For evaluating zero-shot tasks, we modify the EleutherAI LM Harness framework so that it could evaluate pruned LLM models. We provide the modified repo in this link. Make sure to download, extract and install this custom lm_eval
package from the source code.
For reproducibility, we used commit df3da98
on the main branch. All tasks were evaluated on task version of 0 except for BoolQ, where the task version is 1.
On a high level, the functionality we provide is adding two arguments pretrained_model
and tokenizer
in this function. We can then call this simple_evaluate
function API from our codebase to evaluate sparse pruned LLMs. To evaluate zero-shot tasks in addition to the WikiText perplexity, pass the --eval_zero_shot
argument.
License
This project is released under the MIT license. Please see the LICENSE file for more information.
Questions
Feel free to discuss papers/code with us through issues/emails!
boza at fmph.uniba.sk