Awesome
<p align=center>Awesome Diffusion Models In Low-level Vision </p>
<p align=center>🔥A curated list of awesome <b>Diffusion Models(DMs)</b> in low-level vision.🔥</p> <p align=center>Please feel free to offer your suggestions in the Issues and pull requests to add links.</p> <p align=center><b>[ Last updated at 2024/10/12 ]</b></p>Contents
- Latest Works Recommended
- Papers
- Diffusion Models For Natural Image Restoration<details><summary>
General-purpose Image Restoration (IR)</summary>
- Zero-shot DM-based IR
- Supervised DM-based IR</details><details><summary>
Task-specific Image Restoration (IR)</summary>
- Super Resolution
- Inpainting
- Deblur
- Dehaze
- Low-light Enhancement
- Image Fusion</details>
- Extended Diffusion Models In Low-level Vision<details><summary>
Diffusion Models In Low-level Medical Image Analysis</summary>
- MRI
- X-ray-based
- Multi-modal
- Other Modalities</details><details> <summary>
Diffusion Models In Remote Sensing For Low-level Vision Tasks </summary>
- Visible-light Remote Sensing Image
- Hyperspectral Imaging (HSI)
- Synthetic Aperture Radar (SAR)
- Multi-modal</details><details><summary> Varied Low-level Vision Tasks In Video Through Diffusion Models</summary>
- Diffusion Models For Natural Image Restoration<details><summary>
General-purpose Image Restoration (IR)</summary>
- Related Surveys Recommended
- Large-scale datasets for model pre-training
- Datasets for low-level vision tasks
- Evaluation metrics
- Reference
<a id="3.">Latest Works Recommended</a>
Diffusion Models in Low-Level Vision: A Survey<br />Chunming He, Yuqi Shen, Chengyu Fang, Fengyang Xiao, Longxiang Tang, Yulun Zhang, Wangmeng Zuo, Zhenhua Guo, Xiu Li<br />arXiv 2024. [Paper] <br />Jun. 2024<br />
Reti-Diff: Illumination Degradation Image Restoration with Retinex-based Latent Diffusion Model<br />Chunming He, Chengyu Fang, Yulun Zhang, Kai Li, Longxiang Tang, Chenyu You, Fengyang Xiao, Zhenhua Guo, Xiu Li<br /> arXiv 2023. [Paper] [Code]<br /> Nov. 2023<br />
<a id="Papers">Papers</a>
<a id="1.">1. Diffusion Models For Natural Image Restoration</a>
<a id="1.1">1.1 General-purpose Image Restoration</a>
<a id="1.1.1">1.1.1 Zero-shot DM-based IR</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/09 | DDPG | Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance<br /><sup><sub>Tomer Garber,Tom Tirer</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/07 | DAVI | DAVI: Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems<br /><sup><sub>Sojin Lee, Dogyun Park, Inho Kong, Hyunwoo J. Kim</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/07 | - | Prototype Clustered Diffusion Models for Versatile Inverse Problems<br /><sup><sub>Jinghao Zhang, Zizheng Yang, Qi Zhu, Feng Zhao</sup></sub> | arXiv<br />2024 | Paper/ |
2024/07 | ZAPS | Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems<br /><sup><sub>Yaşar Utku Alçalar, Mehmet Akçakaya</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/07 | DDIP3D | Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems<br /><sup><sub>Hyungjin Chung, Jong Chul Ye</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/07 | MoE-DiffIR | MoE-DiffIR: Task-customized Diffusion Priors for Universal Compressed Image Restoration<br /><sup><sub>Yulin Ren, Xin Li, Bingchen Li, Xingrui Wang, Mengxi Guo, Shijie Zhao, Li Zhang, Zhibo Chen</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/03 | Osmosis | Osmosis: RGBD Diffusion Prior for Underwater Image Restoration<br /><sup><sub>Opher Bar Nathan, Deborah Levy, Tali Treibitz, Dan Rosenbaum</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/03 | DCDP | Decoupled Data Consistency with Diffusion Purification for Image Restoration<br /><sup><sub>Xiang Li, Soo Min Kwon, Ismail R. Alkhouri, Saiprasad Ravishankar, Qing Qu</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/03 | Diff-Plugin | Diff-Plugin: Revitalizing Details for Diffusion-based Low-level Tasks<br /><sup><sub>Yuhao Liu, Zhanghan Ke, Fang Liu, Nanxuan Zhao, Rynson W.H. Lau</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/11 | DeqIR | Deep Equilibrium Diffusion Restoration with Parallel Sampling<br /><sup><sub>Jiezhang Cao, Yue Shi, Kai Zhang, Yulun Zhang, Radu Timofte, Luc Van Gool</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/09 | PGDiff | PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance<br /><sup><sub>Peiqing Yang, Shangchen Zhou, Qingyi Tao, Chen Change Loy</sup></sub> | NeurIPS<br />2023 | Paper/Code |
2023/05 | DiffPIR | Denoising diffusion models for plug-and-play image restoration<br /><sup><sub>Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, Luc Van Gool</sup></sub> | CVPR<br />2023 | Paper/Code |
2023/05 | RED-Diff | A Variational Perspective on Solving Inverse Problems with Diffusion Models<br /><sup><sub>Morteza Mardani, Jiaming Song, Jan Kautz, Arash Vahdat</sup></sub> | arXiv<br />2023 | Paper/ |
2023/04 | GDP | Generative Diffusion Prior for Unified Image Restoration and Enhancement<br /><sup><sub>Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong Yang, Tianyue Luo, Bo Zhang, Bo Dai</sup></sub> | CVPR<br />2023 | Paper/Code |
2023/04 | - | Score-Based Diffusion Models as Principled Priors for Inverse Imaging<br /><sup><sub>Berthy T. Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L. Bouman, William T. Freeman</sup></sub> | arXiv<br />2023 | Paper/ |
2023/03 | - | Unlimited-Size Diffusion Restoration<br /><sup><sub>Yinhuai Wang, Jiwen Yu, Runyi Yu, Jian Zhang</sup></sub> | CVPR<br />2023 | Paper/Code |
2023/02 | πGDM | Pseudoinverse-Guided Diffusion Models for Inverse Problems<br /><sup><sub>Jiaming Song, Arash Vahdat, Morteza Mardani, Jan Kautz</sup></sub> | ICLR<br />2023 | Paper/ |
2022/12 | ADIR | ADIR: Adaptive Diffusion for Image Reconstruction<br /><sup><sub>Shady Abu-Hussein, Tom Tirer, Raja Giryes</sup></sub> | arXiv<br />2022 | Paper/ |
2022/12 | DDNM | Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model<br /><sup><sub>Yinhuai Wang, Jiwen Yu, Jian Zhang</sup></sub> | ICLR<br />2023 | Paper/Code |
2022/09 | DPS | Diffusion Posterior Sampling for General Noisy Inverse Problems<br /><sup><sub>Hyungjin Chung, Jeongsol Kim, Michael T. Mccann, Marc L. Klasky, Jong Chul Ye</sup></sub> | CVPR<br />2023 | Paper/Code |
2022/01 | MCG | Improving diffusion models for inverse problems using manifold constraints<br /><sup><sub>Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, Jong Chul Ye</sup></sub> | NeurIPS<br />2022 | Paper/Code |
2022/01 | DDRM | Denoising Diffusion Restoration Models<br /><sup><sub>Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song</sup></sub> | NeurIPS<br />2022 | Paper/Code |
2021/12 | CCDF | Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction<br /><sup><sub>Hyungjin Chung, Byeongsu Sim, Jong Chul Ye</sup></sub> | CVPR<br />2022 | Paper/ |
2021/08 | ILVR | ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models<br /><sup><sub>Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon</sup></sub> | ICCV<br />2021 | Paper/Code |
2021/05 | SNeurIPS | SNeurIPS: Solving Noisy Inverse Problems Stochastically<br /><sup><sub>Bahjat Kawar, Gregory Vaksman, Michael Elad</sup></sub> | NeurIPS<br />2021 | Paper/Code |
<a id="1.1.2">1.1.2 Supervised DM-based IR</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/10 | Resfusion | Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise<br /><sup><sub>Zhenning Shi, Haoshuai Zheng, Chen Xu, Changsheng Dong, Bin Pan, Xueshuo Xie, Along He, Tao Li, Huazhu Fu</sup></sub> | NeurIPS<br /> 2024 | Paper/Code |
2024/09 | DTPM | Learning Diffusion Texture Priors for Image Restoration<br /><sup><sub>Tian Ye, Sixiang Chen, Wenhao Chai, Zhaohu Xing, Jing Qin, Ge Lin, Lei Zhu</sup></sub> | CVPR<br />2024 | Paper/ |
2024/07 | Difface | Difface: Blind face restoration with diffused error contraction<br /><sup><sub>Zongsheng Yue, Chen Change Loy</sup></sub> | TPAMI<br />2024 | Paper/Code |
2024/05 | AutoDIR | AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion<br /><sup><sub>Yitong Jiang, Zhaoyang Zhang, Tianfan Xue, Jinwei Gu</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/04 | SUPIR | Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild<br /><sup><sub>Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, Chao Dong</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/03 | MPerceiver | Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration<br /><sup><sub>Yuang Ai, Huaibo Huang, Xiaoqiang Zhou, Jiexiang Wang, Ran He</sup></sub> | CVPR<br />2024 | Paper/ |
2024/03 | DiffUIR | Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model<br /><sup><sub>Dian Zheng, Xiao-Ming Wu, Shuzhou Yang, Jian Zhang, Jian-Fang Hu, Wei-Shi Zheng</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/03 | - | Efficient Diffusion Model for Image Restoration by Residual Shifting<br /><sup><sub>Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, Luc Van Gool</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/02 | WaveDM | WaveDM: Wavelet-Based Diffusion Models for Image Restoration<br /><sup><sub>Yi Huang, Jiancheng Huang, Jianzhuang Liu, Mingfu Yan, Yu Dong, Jiaxi Lv</sup></sub> | IEEE Trans Multimedia<br />2024 | Paper/Code |
2023/11 | WF-Diff | Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration<br /><sup><sub>Chen Zhao, Weiling Cai, Chenyu Dong, Chengwei Hu</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/10 | Event-Diffusion | Event-Diffusion: Event-Based Image Reconstruction and Restoration with Diffusion Models<br /><sub>Quanmin Liang, Xiawu Zheng, Kai Huang, Yan Zhang, Jie Chen, Yonghong Tian</sub> | MM<br />2023 | Paper/ |
2023/10 | C2F-DFT | Learning A Coarse-to-Fine Diffusion Transformer for Image Restoration<br /><sub>Liyan Wang, Qinyu Yang, Cong Wang, Wei Wang, Jinshan Pan, Zhixun Su</sub> | arXiv<br />2023 | Paper/Code |
2023/08 | RDDM | Residual Denoising Diffusion Models<br /><sup><sub>Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, Liangqiong Qu</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/07 | PiRN | Physics-Driven Turbulence Image Restoration with Stochastic Refinement<br /><sup><sub>Ajay Jaiswal, Xingguang Zhang, Stanley H. Chan, Zhangyang Wang</sup></sub> | ICCV<br />2023 | Paper/Code |
2023/08 | DiffBIR | DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior<br /><sup><sub>Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, Chao Dong</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/07 | SinDDM | SinDDM: A Single Image Denoising Diffusion Model<br /><sup><sub>Vladimir Kulikov, Shahar Yadin, Matan Kleiner, Tomer Michaeli</sup></sub> | ICML<br />2023 | Paper/Code |
2023/07 | IDM | Towards Authentic Face Restoration with Iterative Diffusion Models and Beyond<br /><sup><sub>Yang Zhao, Tingbo Hou, Yu-Chuan Su, Xuhui Jia. Yandong Li, Matthias Grundmann</sup></sub> | ICCV<br />2023 | Paper/ |
2023/05 | InDI | Inversion by Direct Iteration: An Alternative to Denoising Diffusion for Image Restoration<br/><sup><sub>Mauricio Delbracio, Peyman Milanfar</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/05 | UCDIR | A Unified Conditional Framework for Diffusion-based Image Restoration<br/><sup><sub>Yi Zhang, Xiaoyu Shi, Dasong Li, Xiaogang Wang, Jian Wang, Hongsheng Li</sup></sub> | NeurIPS<br />2023 | Paper/Code |
2023/03 | DiracDiffusion | DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency<br /><sup><sub>Zalan Fabian, Berk Tinaz, Mahdi Soltanolkotabi</sup></sub> | arXiv<br />2023 | Paper/ |
2023/04 | Refusion | Refusion: Enabling Large-Size Realistic Image Restoration with Latent-Space Diffusion Models<br /><sup><sub>Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön</sup></sub> | CVPRW<br />2023 | Paper/Code |
2023/01 | IR-SDE | Image Restoration with Mean-Reverting Stochastic Differential Equations<br /><sup><sub>Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön</sup></sub> | ICML<br />2023 | Paper/Code |
2021/12 | LDM | High-resolution image synthesis with latent diffusion models<br /><sup><sub>Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer</sup></sub> | CVPR<br />2022 | Paper/Code |
<a id="1.2">1.2 Task-specific Image Restoration</a>
<a id="1.2.1">1.2.1 Super Resolution (SR)</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/09 | SinSR | SinSR: Diffusion-Based Image Super-Resolution in a Single Step<br /><sup><sub>Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu, Yu Qiao, Alex C. Kot, Bihan Wen</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/09 | CCSR | Improving the Stability and Efficiency of Diffusion Models for Content Consistent Super-Resolution<br /><sup><sub>Lingchen Sun, Rongyuan Wu, Jie Liang, Zhengqiang Zhang, Hongwei Yong, Lei Zhang</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/07 | DiWa | Waving goodbye to low-res: A diffusion-wavelet approach for image super-resolution<br /><sup><sub>Brian B. Moser, Stanislav Frolov, Federico Raue, Sebastian Palacio, Andreas Dengel</sup></sub> | IJCNN<br />2024 | Paper/ |
2024/05 | CDFormer | CDFormer:When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution<br /><sup><sub>Qingguo Liu, Chenyi Zhuang, Pan Gao, Jie Qin</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/4 | OmniSSR | OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model<br /><sup><sub>Runyi Li, Xuhan Sheng, Weiqi Li, Jian Zhang</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/04 | DiffMSR | Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution<br /><sup><sub>Guangyuan Li, Chen Rao, Juncheng Mo, Zhanjie Zhang, Wei Xing, Lei Zhao</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/04 | DiSR-NeRF | DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF<br /><sup><sub>Jie Long Lee, Chen Li, Gim Hee Lee</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/03 | RefDiff | Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model<br /><sup><sub>Runmin Dong, Shuai Yuan, Bin Luo, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Weijia Li, Juepeng Zheng, Haohuan Fu</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/03 | SARGD | Self-Adaptive Reality-Guided Diffusion for Artifact-Free Super-Resolution<br /><sup><sub>--</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/03 | - | Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder<br /><sup><sub>Jinseok Kim, Tae-Kyun Kim</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/03 | XPSR | XPSR: Cross-modal Priors for Diffusion-based Image Super-Resolution<br /><sup><sub>Yunpeng Qu, Kun Yuan, Kai Zhao, Qizhi Xie, Jinhua Hao, Ming Sun, Chao Zhou</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/02 | SAM-DiffSR | SAM-DiffSR: Structure-Modulated Diffusion Model for Image Super-Resolution<br /><sub>Chengcheng Wang, Zhiwei Hao, Yehui Tang, Jianyuan Guo, Yujie Yang, Kai Han, Yunhe Wang</sub> | arXiv<br />2024 | Paper/Code |
2024/01 | SeeSR | SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution<br /><sup><sub>Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, Lei Zhang</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/12 | DiffTSR | Diffusion-based Blind Text Image Super-Resolution<br /><sup><sub>Yuzhe Zhang, Jiawei Zhang, Hao Li, Zhouxia Wang, Luwei Hou, Dongqing Zou, Liheng Bian</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/12 | stisr-tcdm | Scene Text Image Super-resolution based on Text-conditional Diffusion Models<br /><sub>Chihiro Noguchi, Shun Fukuda, Masao Yamanaka</sub> | WACV<br />2024 | Paper/Code |
2023/11 | CoSeR | CoSeR: Bridging Image and Language for Cognitive Super-Resolution<br /><sup><sub>Haoze Sun, Wenbo Li, Jianzhuang Liu, Haoyu Chen, Renjing Pei, Xueyi Zou, Youliang Yan, Yujiu Yang</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/10 | MoESR | Image Super-resolution Via Latent Diffusion: A Sampling-space Mixture Of Experts And Frequency-augmented Decoder Approach<br /><sup><sub>Feng Luo, Jinxi Xiang, Jun Zhang, Xiao Han, Wei Yang</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/09 | - | License Plate Super-Resolution Using Diffusion Models<br /><sup><sub>Sawsan AlHalawani, Bilel Benjdira, Adel Ammar, Anis Koubaa, Anas M. Ali</sup></sub> | arXiv<br />2023 | Paper/ |
2023/08 | PASD | Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization<br /><sup><sub>Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, Lei Zhang</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/07 | ResShift | ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting<br /><sup><sub>Zongsheng Yue, Jianyi Wang, Chen Change Loy</sup></sub> | NeurIPS<br />2023 | Paper/Code |
2023/07 | PartDiff | PartDiff: Image Super-resolution with Partial Diffusion Models<br /><sup><sub>Axi Niu, Pham Xuan Trung, Kang Zhang, Jinqiu Sun, Yu Zhu, In So Kweon, Yanning Zhang</sup></sub> | arXiv<br />2023 | Paper/ |
2023/07 | ACDMSR | ACDMSR: Accelerated Conditional Diffusion Models for Single Image Super-Resolution<br /><sup><sub>Axi Niu, Pham Xuan Trung, Kang Zhang, Jinqiu Sun, Yu Zhu, In So Kweon, Yanning Zhang</sup></sub> | IEEE Trans. Broadcast.<br />2024 | Paper/ |
2023/05 | StableSR | Exploiting Diffusion Prior for Real-World Image Super-Resolution<br /><sup><sub>Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin C.K. Chan, Chen Change Loy</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/03 | DR2 | DR2: Diffusion-Based Robust Degradation Remover for Blind Face Restoration<br /><sup><sub>Zhixin Wang, Xiaoyun Zhang, Ziying Zhang, Huangjie Zheng, Mingyuan Zhou, Ya Zhang, Yanfeng Wang</sup></sub> | CVPR<br />2023 | Paper/Code |
2023/03 | ResDiff | ResDiff: Combining CNN and Diffusion Model for Image Super-Resolution<br /><sup><sub>Shuyao Shang, Zhengyang Shan, Guangxing Liu, Jinglin Zhang</sup></sub> | AAAI<br />2024 | Paper/Code |
2023/03 | IDM | Implicit Diffusion Models for Continuous Super-Resolution<br /><sup><sub>Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu, Xiantong Zhen, Baochang Zhang</sup></sub> | CVPR<br />2023 | Paper/Code |
2023/02 | - | Denoising Diffusion Probabilistic Models for Robust Image Super-Resolution in the Wild<br /><sup><sub>Hshmat Sahak, Daniel Watson, Chitwan Saharia, David Fleet</sup></sub> | arXiv<br />2023 | Paper/ |
2023/02 | CDPMSR | CDPMSR: Conditional Diffusion Probabilistic Models for Single Image Super-Resolution<br /><sup><sub>Axi Niu, Kang Zhang, Trung X. Pham, Jinqiu Sun, Yu Zhu, In So Kweon, Yanning Zhang</sup></sub> | arXiv<br />2023 | Paper/ |
2022/09 | SUE-SR | Face Super-Resolution Using Stochastic Differential Equations<br /><sup><sub>Marcelo dos Santos, Rayson Laroca, Rafael O. Ribeiro, João Neves, Hugo Proença, David Menotti</sup></sub> | SIGGRAPH<br />2022 | Paper/Code |
2021/05 | CDM | Cascaded Diffusion Models for High Fidelity Image Generation<br /><sup><sub>Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi, Tim Salimans.</sup></sub> | JMLR<br />2022 | Paper/Code |
2021/04 | SR3 | Image Super-Resolution via Iterative Refinement<br /><sup><sub>Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, Mohammad Norouzi.</sup></sub> | TPAMI<br />2022 | Paper/Code |
2021/04 | SRDiff | SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models <br/><sup><sub>H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen.</sup></sub> | Neurocomputing<br />2022 | Paper/Code |
<a id="1.2.2">1.2.2 Inpainting</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/09 | CAT-Diffusion | Improving Text-guided Object Inpainting with Semantic Pre-inpainting<br/><sup><sub>Yifu Chen, Jingwen Chen, Yingwei Pan, Yehao Li, Ting Yao, Zhineng Chen, Tao Mei</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/08 | GSDM | Text Image Inpainting via Global Structure-Guided Diffusion Models<br/><sup><sub>Shipeng Zhu, Pengfei Fang, Chenjie Zhu, Zuoyan Zhao, Qiang Xu, Hui Xue</sup></sub> | AAAI<br />2024 | Paper/Code |
2024/07 | PILOT | Coherent and Multi-modality Image Inpainting via Latent Space Optimization<br/><sub>Lingzhi Pan, Tong Zhang, Bingyuan Chen, Qi Zhou, Wei Ke, Sabine Süsstrunk, Mathieu Salzmann</sub> | arXiv<br />2024 | Paper/Code |
2024/07 | Diffree | Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model<br/><sup><sub>Lirui Zhao, Tianshuo Yang, Wenqi Shao, Yuxin Zhang, Yu Qiao, Ping Luo, Kaipeng Zhang, Rongrong Ji</sup></sub> | arxiv<br />2024 | Paper/Code |
2024/03 | StrDiffusion | Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting<br/><sup><sub>Haipeng Liu, Yang Wang, Biao Qian, Meng Wang, Yong Rui</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/03 | MMGInpainting | MMGInpainting: Multi-Modality Guided Image Inpainting Based On Diffusion Models<br/><sup><sub>Cong Zhang, Wenxia Yang, Xin Li, Huan Han</sup></sub> | IEEE Trans Multimedia<br />2024 | Paper/Code |
2024/03 | BrushNet | BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion<br/><sup><sub>Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan, Qiang Xu</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/03 | - | Fill in the ____ (a Diffusion-based Image Inpainting Pipeline)<br/><sup><sub>Eyoel Gebre, Krishna Saxena, Timothy Tran</sup></sub> | arXiv<br />2024 | Paper/ |
2024/01 | LatentPaint | LatentPaint: Image Inpainting in Latent Space With Diffusion Models<br/><sup><sub>Ciprian Corneanu, Raghudeep Gadde, Aleix M. Martinez</sup></sub> | WACV<br />2024 | Paper/ |
2023/12 | - | Amodal Completion via Progressive Mixed Context Diffusion<br/><sup><sub>Katherine Xu, Lingzhi Zhang, Jianbo Shi</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/11 | Tiramisu | Image Inpainting via Tractable Steering of Diffusion Models<br/><sup><sub>Anji Liu, Mathias Niepert, Guy Van den Broeck</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/10 | Uni-paint | Uni-paint: A Unified Framework for Multimodal Image Inpainting with Pretrained Diffusion Model<br/><sup><sub>Shiyuan Yang, Xiaodong Chen, Jing Liao</sup></sub> | MM<br />2023 | Paper/Code |
2023/09 | Gradpaint | Gradpaint: Gradient-Guided Inpainting with Diffusion Models<br/><sup><sub>Asya Grechka, Guillaume Couairon, Matthieu Cord</sup></sub> | CVIU<br />2024 | Paper/Code |
2022/12 | SmartBrush | SmartBrush: Text and Shape Guided Object Inpainting With Diffusion Model<br/><sup><sub>Shaoan Xie 1, Zhifei Zhang, Zhe Lin, Tobias Hinz, Kun Zhang*</sup></sub> | CVPR<br />2023 | Paper/ |
2023/04 | Copaint | Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models<br/><sup><sub>Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, Shiyu Chang</sup></sub> | ICML<br />2023 | Paper/Code |
2022/05 | Palette | Palette: Image-to-image diffusion models<br/><sup><sub>C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi.</sup></sub> | SIGGRAPH<br/>2022 | Paper/Code |
2022/01 | RePaint | Repaint: Inpainting using denoising diffusion probabilistic models<br/><sup><sub>A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool.</sup></sub> | CVPR<br />2022 | Paper/Code |
<a id="1.2.3">1.2.3 Deblur</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/04 | Diffevent | Diffevent: Event Residual Diffusion for Image Deblurring<br /><sup><sub>Pei Wang, Jiumei He, Qingsen Yan, Yu Zhu, Jinqiu Sun, Yanning Zhang</sup></sub> | ICASSP<br />2024 | Paper/Code |
2024/01 | FastDiffusionEM | Fast Diffusion EM: a diffusion model for blind inverse problems with application to deconvolution<br /><sup><sub>Charles Laroche, Andrés Almansa, Eva Coupete</sup></sub> | WACV<br />2024 | Paper/Code |
2024/01 | SI-DDPM-FMO | Single-Image Deblurring, Trajectory and Shape Recovery of Fast Moving Objects With Denoising Diffusion Probabilistic Models<br /><sup><sub>Radim Spetlik, Denys Rozumnyi, Jiří Matas</sup></sub> | WACV<br />2024 | Paper/Code |
2023/12 | ID-Blau | ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation<br /><sup><sub>Jia-Hao Wu, Fu-Jen Tsai, Yan-Tsung Peng, Chung-Chi Tsai, Chia-Wen Lin, Yen-Yu Lin</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/05 | HI-Diff | Hierarchical Integration Diffusion Model for Realistic Image Deblurring<br /><sup><sub>Zheng Chen, Yulun Zhang, Ding Liu, Bin Xia, Jinjin Gu, Linghe Kong, Xin Yuan</sup></sub> | arXiv<br />2023 | Paper/ |
2022/12 | - | Multiscale Structure Guided Diffusion for Image Deblurring<br /><sup><sub>M. Ren, M. Delbracio, H. Talebi, G. Gerig, and P. Milanfar.</sup></sub> | ICCV<br />2023 | Paper/ |
2021/12 | DVSR | Deblurring via Stochastic Refinement<br /><sup><sub>Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G. Dimakis, Peyman Milanfar</sup></sub> | CVPR<br/>2022 | Paper/Code |
<a id="1.2.4">1.2.4 Dehaze</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/09 | DiffLI<sup>2</sup>D | Unleashing the Potential of the Semantic Latent Space in Diffusion Models for Image Dehazing<br /><sup><sub>Zizheng Yang, Hu Yu, Bing Li, Jinghao Zhang, Jie Huang, Feng Zhao</sup></sub> | ECCV<br />2024 | Paper/ |
2024/08 | - | Image Dehazing Method Based on Diffusion Model<br /><sup><sub>Fengxu Guan; Haitao Lai; Hanyu Zang; Jinbao Huang</sup></sub> | ICMA<br />2024 | Paper/ |
2024/08 | MP-DDPM | A Multi-scale Patch Approach with Diffusion Model for Image Dehazing<br /><sup><sub>Yao Guo, Yongliang Wu & Changsheng Wan</sup></sub> | ICIC<br />2024 | Paper/ |
2024/07 | FP-Diff | Frequency-based and Physics-guiding Diffusion Model for Single Image Dehazing<br /><sup><sub>Siying Xie; Fuping Li; Mingye Ju</sup></sub> | CCC<br />2024 | Paper/ |
2024/07 | DehazeDiff | DehazeDiff: When Conditional Guidance Meets Diffusion Models for Image Dehazing<br /><sup><sub>Longyu Cheng, Xujin Ba, Yanyun Qu</sup></sub> | ISCAS<br />2024 | Paper/ |
2024/05 | - | Image Dehazing based on Iterative-Refining Diffusion Model<br /><sup><sub>Jiarong Wang, Hao Hu</sup></sub> | ICIGP<br />2024 | Paper/ |
2024/04 | JCDM | Joint Conditional Diffusion Model for Image Restoration with Mixed Degradations<br /><sub>Yufeng Yue, Meng Yu, Luojie Yang, Yi Yang</sub> | arXiv<br />2024 | Paper/Code |
2024/04 | DehazeDDPM | High-quality Image Dehazing with Diffusion Model<br /><sub>Hu Yu, Jie Huang, Kaiwen Zheng, Feng Zhao</sub> | arXiv<br />2024 | Paper/Code |
2023/10 | DehazeDM | DehazeDM: Image Dehazing via Patch Autoencoder Based on Diffusion Models<br /><sub>Yuming Yang; Dongsheng Zou; Xinyi Song; Xiaotong Zhang</sub> | SMC<br />2023 | Paper |
2023/08 | HazeAug | Frequency Compensated Diffusion Model for Real-scene Dehazing<br /><sup><sub>Jing Wang, Songtao Wu, Kuanhong Xu, Zhiqiang Yuan</sup></sub> | Neural Networks<br />2024 | Paper/Code |
2022/11 | WeatherDiff | Restoring Vision in Adverse Weather Conditions with Patch-Based Denoising Diffusion Models<br /><sup><sub>Ozan Özdenizci, Robert Legenstein</sup></sub> | TPAMI<br />2023 | Paper/Code |
<a id="1.2.5">1.2.5 Low-light Enhancement</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/10 | - | Super-resolving Real-world Image Illumination Enhancement: A New Dataset and A Conditional Diffusion Model<br /><sup><sub>Yang Liu, Yaofang Liu, Jinshan Pan, Yuxiang Hui, Fan Jia, Raymond H. Chan, Tieyong Zeng</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/09 | FourierDiff | Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring<br /><sup><sub>Xiaoqian Lv, Shengping Zhang, Chenyang Wang, Yichen Zheng, Bineng Zhong, Chongyi Li</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/09 | DiffLight | DiffLight: Integrating Content and Detail for Low-light Image Enhancement<br /><sup><sub>Yixu Feng, Shuo Hou, Haotian Lin, Yu Zhu, Peng Wu, Wei Dong, Jinqiu Sun, Qingsen Yan, Yanning Zhang</sup></sub> | CVPR<br />2024 | Paper/ |
2024/09 | DLDiff | DLDiff: Image Detail-guided Latent Diffusion Model for Low-Light Image Enhancement<br /><sup><sub>Minglong Xue; Yanyi He; Jinhong He; Senming Zhong</sup></sub> | LSP<br />2024 | Paper/Code |
2024/09 | - | Low Light Image Enhancement Based on a Pyramid Diffusion Model<br /><sup><sub>Xiang Li; Chunling Liu; Hui Cheng</sup></sub> | ISPDS<br />2024 | Paper/ |
2024/08 | - | Image Intrinsic Components Guided Conditional Diffusion Model for Low-light Image Enhancement<br /><sup><sub>Sicong Kang; Shuaibo Gao; Wenhui Wu; Xu Wang; Shuoyao Wang; Guoping Qiu</sup></sub> | TCSVT<br />2024 | Paper/ |
2024/08 | MDDE | Low Light Image Enhancement Based on Retinex Theory and Diffusion Model<br /><sup><sub>Tao Chen, Dongmei Liu</sup></sub> | ICDSP<br />2024 | Paper/ |
2024/07 | PSC diffusion | PSC diffusion: patch-based simplified conditional diffusion model for low-light image enhancement<br /><sup><sub>Fei Wan, Bingxin Xu, Weiguo Pan, Hongzhe Liu</sup></sub> | Multimed. Syst.<br />2024 | Paper/ |
2024/07 | JoReS-Diff | JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement<br /><sup><sub>Yuhui Wu, Guoqing Wang, Zhiwen Wang, Yang Yang, Tianyu Li, Malu Zhang, Chongyi Li, Heng Tao Shen</sup></sub> | MM<br />2024 | Paper/ |
2024/07 | AGLLDiff | AGLLDiff: Guiding Diffusion Models Towards Unsupervised Training-free Real-world Low-light Image Enhancement<br /><sup><sub>Yunlong Lin, Tian Ye, Sixiang Chen, Zhenqi Fu, Yingying Wang, Wenhao Chai, Zhaohu Xing, Lei Zhu, Xinghao Ding</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/07 | LightenDiffusion | LightenDiffusion: Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models<br /><sup><sub>Hai Jiang, Ao Luo, Xiaohong Liu, Songchen Han, Shuaicheng Liu</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/07 | Zero-LED | Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement<br /><sup><sub>Jinhong He, Minglong Xue, Aoxiang Ning, Chengyun Song</sup></sub> | arXiv<br />2024 | Paper/ |
2024/07 | - | Enhancing Low-Light Images: A Novel Approach Combining Anisotropic Diffusion and Retinex<br /><sup><sub>Mingyang Sun; Ru Yi; Xinxin Wang; Ningtao Ma</sup></sub> | CSCWD<br />2024 | Paper/ |
2024/07 | SVBoost | Low Light Enhancement in Street Scenes Based on Diffusion Model<br /><sub>Rui Xia; Lisong Wang; Taili Li; Pingping Shi</sub> | CSCWD<br />2024 | Paper/ |
2024/04 | LightDiff | Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving<br /><sup><sub>Jinlong Li, Baolu Li, Zhengzhong Tu, Xinyu Liu, Qing Guo, Felix Juefei-Xu, Runsheng Xu, Hongkai Yu</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/04 | - | A ground-based dataset and a diffusion model for on-orbit low-light image enhancement<br /><sup><sub>Yiman Zhu, Lu Wang, Jingyi Yuan, Yu Guo</sup></sub> | arXiv<br />2024 | Paper/ |
2024/04 | SG-DDPM | SG-DDPM: Semantic-Guided Diffusion Model for Low-Light Image Enhancement<br /><sup><sub>Shize Wang</sup></sub> | ICCECE<br />2024 | Paper/ |
2024/03 | MDMS | Multi-Domain Multi-Scale Diffusion Model for Low-Light Image Enhancement<br /><sup><sub>Kai Shang, Mingwen Shao, Chao Wang, Yuanshuo Cheng, Shuigen Wang</sup></sub> | AAAI<br />2024 | Paper/Code |
2024/02 | TDS | TDS: Two Diffusion Streams for Low-Light Image Enhancement<br /><sup><sub>Jieming Wang; Xianqin Liu; Yijun Zhang; Jianfang Hu</sup></sub> | CSECS<br />2024 | Paper/ |
2024/01 | CFWD | Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion<br /><sup><sub>Minglong Xue, Jinhong He, Yanyi He, Zhipu Liu, Wenhai Wang, Mingliang Zhou</sup></sub> | arXiv<br />2024 | Paper/Code/ |
2023/12 | L<sup>2</sup>DM | L<sup>2</sup>DM: A Diffusion Model for Low-Light Image Enhancement<br /><sup><sub>Lv, Xingguo and Dong, Xingbo and Jin, Zhe and Zhang, Hui and Song, Siyi and Li, Xuejun</sup></sub> | PRCV<br />2023 | Paper/Code |
2023/11 | Reti-Diff | Reti-Diff: Illumination Degradation Image Restoration with Retinex-based Latent Diffusion Model<br /><sup><sub>Chunming He, Chengyu Fang, Yulun Zhang, Kai Li, Longxiang Tang, Chenyu You, Fengyang Xiao, Zhenhua Guo, Xiu Li</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/10 | GASD | Global Structure-Aware Diffusion Process for Low-Light Image Enhancement<br /><sup><sub>Jinhui Hou, Zhiyu Zhu, Junhui Hou, Hui Liu, Huanqiang Zeng, Hui Yuan</sup></sub> | NeurIPS<br />2023 | Paper/Code |
2023/10 | CLEDiffusion | CLE Diffusion: Controllable Light Enhancement Diffusion Model<br /><sup><sub>Yuyang Yin, Dejia Xu, Chuangchuang Tan, Ping Liu, Yao Zhao, Yunchao Wei</sup></sub> | MM<br />2023 | Paper/Code |
2023/10 | LLDE | LLDE: Enhancing Low-Light Images with Diffusion Model<br /><sup><sub>Xin Peng Oo, Chee Seng Chan</sup></sub> | ICIP<br />2023 | Paper/Code |
2023/09 | - | Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement<br /><sup><sub>Jiancheng Huang, Yifan Liu, Shifeng Chen</sup></sub> | PRICAI<br /> 2023 | Paper/ |
2023/08 | DiffLLE | DiffLLE: Diffusion-guided Domain Calibration for Unsupervised Low-light Image Enhancement<br /><sup><sub>Shuzhou Yang, Xuanyu Zhang, Yinhuai Wang, Jiwen Yu, Yuhan Wang, Jian Zhang</sup></sub> | arXiv<br />2023 | Paper/ |
2023/08 | ExposureDiffusion | ExposureDiffusion: Learning to Expose for Low-light Image Enhancement<br /><sup><sub>Yufei Wang, Yi Yu, Wenhan Yang, Lanqing Guo, Lap-Pui Chau, Alex C. Kot, Bihan Wen</sup></sub> | ICCV<br />2023 | Paper/Code |
2023/08 | Diff-Retinex | Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model<br /><sup><sub>Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, Jiayi Ma</sup></sub> | ICCV<br />2023 | Paper/ |
2023/08 | CLE Diffusion | CLE Diffusion: Controllable Light Enhancement Diffusion Model<br /><sup><sub>Yuyang Yin, Dejia Xu, Chuangchuang Tan, Ping Liu, Yao Zhao, Yunchao Wei</sup></sub> | MM<br />23 | Paper/Code |
2023/07 | LLDiffusion | LLDiffusion: Learning Degradation Representations in Diffusion Models for Low-Light Image Enhancement<br /><sup><sub>Tao Wang, Kaihao Zhang, Ziqian Shao, Wenhan Luo, Bjorn Stenger, Tae-Kyun Kim, Wei Liu, Hongdong Li</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/07 | DiffLIE | DiffLIE: Low-Light Image Enhancment based on Deep Diffusion Model<br /><sup><sub>Guanyu Wu; Cheng. Jin</sup></sub> | ISCTIS<br />2023 | Paper/ |
2023/06 | - | Diffusion Model Based Low-Light Image Enhancement for Space Satellite<br /><sup><sub>Yiman Zhu, Lu Wang, Jingyi Yuan, Yu Guo</sup></sub> | arXiv<br />2023 | Paper/ |
2023/05 | PyDiff | Pyramid Diffusion Models For Low-light Image Enhancement<br /><sup><sub>Dewei Zhou, Zongxin Yang, Yi Yang</sup></sub> | IJCAI<br />2023 | Paper/Code |
2023/03 | LPDM | Denoising Diffusion Post-Processing for Low-Light Image Enhancement<br /><sup><sub>Savvas Panagiotou, Anna S. Bosman</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/03 | DiD | Diffusion in the Dark: A Diffusion Model for Low-Light Text Recognition<br /><sup><sub>Cindy M. Nguyen, Eric R. Chan, Alexander W. Bergman, Gordon Wetzstein</sup></sub> | WACV<br />2024 | Paper/Code |
2023/01 | DiffLL | Low-Light Image Enhancement with Wavelet-based Diffusion Models<br /><sup><sub>Hai Jiang, Ao Luo, Songchen Han, Haoqiang Fan, Shuaicheng Liu</sup></sub> | TOG<br />2023 | Paper/Code |
<a id="1.2.6">1.2.6 Image Fusion</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/12 | MADMFuse | MADMFuse: A multi-attribute diffusion model to fuse infrared and visible images<br /><sup><sub>Hang Xu, Rencan Nie, Jinde Cao, Mingchuan Tan, Zhengze Ding</sup></sub> | DSP<br />2024 | Paper/ |
2024/10 | Diff-IF | Diff-IF: Multi-modality image fusion via diffusion model with fusion knowledge prior<br /><sup><sub>Xunpeng Yi, Linfeng Tang, Hao Zhang, Han Xu, Jiayi Ma</sup></sub> | Inf. Fusion 2024 | Paper/Code |
2024/08 | LFDT-Fusion | LFDT-Fusion: A latent feature-guided diffusion Transformer model for general image fusion<br /><sub>Bo Yang, Zhaohui Jiang, Dong Pan, Haoyang Yu, Gui Gui, Weihua Gui</sub> | Inf. Fusion 2025 | Paper/Code |
2024/07 | FusionDiff | FusionDiff: A unified image fusion network based on diffusion probabilistic models<br /><sub>Zefeng Huang, Shen Yang , Jin Wu, Lei Zhu, Jin Liu</sub> | CVIU<br />2024 | Paper/ |
2024/07 | GLAD | GLAD: A Global-Attention-Based Diffusion Model for Infrared and Visible Image Fusion<br /><sub>Haozhe Guo, Mengjie Chen, Kaijiang Li, Hao Su, and Pei Lv</sub> | ICIC<br />2024 | Paper/ |
2024/04 | Dif-PAN | Diffusion model with disentangled modulations for sharpening multispectral and hyperspectral images<br /><sub>Zihan Cao, Shiqi Cao, Liang-Jian Deng, Xiao Wu, Junming Hou, Gemine Vivone</sub> | Inf. Fusion<br />2024 | Paper/Code |
2023/06 | FusionDiff | FusionDiff: Multi-focus image fusion using denoising diffusion probabilistic models<br /><sup><sub>Mining Li, Ronghao Pei, Tianyou Zheng, Yang Zhang, Weiwei Fu</sup></sub> | ESWA<br />2024 | Paper/Code |
2023/04 | DDRF | DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion<br /><sup><sub>ZiHan Cao, ShiQi Cao, Xiao Wu, JunMing Hou, Ran Ran, Liang-Jian Deng</sup></sub> | arXiv<br />2023 | Paper/ |
2023/03 | DDFM | DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion<br /><sup><sub>Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu Timofte, Luc Van Gool</sup></sub> | ICCV<br />2023 | Paper/Code |
2023/01 | Dif-Fusion | Dif-Fusion: Towards High Color Fidelity in Infrared and Visible Image Fusion with Diffusion Models<br /><sup><sub>Jun Yue, Leyuan Fang, Shaobo Xia, Yue Deng, Jiayi Ma</sup></sub> | TIP<br />2023 | Paper/Code |
<a id="2.">2. Extended Diffusion Models In Low-level Vision</a>
<a id="2.1">2.1 Diffusion Models In Low-level Medical Image Analysis</a>
<a id="2.1.1">2.1.1 MRI</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/08 | DiMO | Diffusion Modeling with Domain-conditioned Prior Guidance for Accelerated MRI and qMRI Reconstruction<br /><sup><sub>Wanyu Bian, Albert Jang, Liping Zhang, Xiaonan Yang, Zachary Stewart, Fang Liu</sup></sub> | TMI<br />2024 | Paper/ |
2024/04 | DiffMSR | Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution<br /><sup><sub>Guangyuan Li, Chen Rao, Juncheng Mo, Zhanjie Zhang, Wei Xing, Lei Zhao</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/05 | PPN | Fast Controllable Diffusion Models for Undersampled MRI Reconstruction<br /><sup><sub>Wei Jiang, Zhuang Xiong, Feng Liu, Nan Ye, Hongfu Sun</sup></sub> | ISIB<br />2024 | Paper/ |
2024/02 | MRPD | MRPD: Undersampled MRI reconstruction by prompting a large latent diffusion model<br /><sup><sub>Ziqi Gao, S. Kevin Zhou</sup></sub> | arxiv<br />2024 | Paper/Code |
2024/01 | HFS-SDE | High-Frequency Space Diffusion Model for Accelerated MRI<br /><sup><sub>Chentao Cao, Zhuo-Xu Cui, Yue Wang, Shaonan Liu, Taiin Chen, Hairong Zheng</sup></sub> | TMI<br />2024 | Paper/Code |
2023/10 | SMRD | SMRD: SURE-Based Robust MRI Reconstruction with Diffusion Models<br /><sup><sub>Batu Ozturkler, Chao Liu, Benjamin Eckart, Morteza Mardani, Jiaming Song, Jan Kautz</sup></sub> | MICCAI<br />2023 | Paper/Code |
2023/10 | InverseSR | InverseSR: 3D Brain MRI Super-Resolution Using a Latent Diffusion Model<br /><sup><sub>Jueqi Wang, Jacob Levman, Walter Hugo Lopez Pinaya, Petru-Daniel Tudosiu, M. Jorge Cardoso & Razvan Marinescu</sup></sub> | MICCAI<br />2023 | Paper/Code |
2023/10 | DisC-Diff | DisC-Diff: Disentangled Conditional Diffusion Model for Multi-contrast MRI Super-Resolution<br /><sup><sub>Ye Mao, Lan Jiang, Xi Chen, Chao Li</sup></sub> | MICCAI<br />2023 | Paper/Code |
2023/10 | CDiffMR | CDiffMR: Can We Replace the Gaussian Noise with K-Space Undersampling for Fast MRI?<br /><sup><sub>Jiahao Huang, Angelica I. Aviles-Rivero, Carola-Bibiane Schönlieb, Guang Yang</sup></sub> | MICCAI<br />2023 | Paper/Code |
2023/10 | SSDiffRecon | Self-supervised MRI Reconstruction with Unrolled Diffusion Models<br /><sup><sub>Yilmaz Korkmaz, Tolga Cukur, Vishal M. Patel</sup></sub> | MICCAI<br />2023 | Paper/Code |
2023/08 | - | Super-resolution of brain MRI images based on denoising diffusion probabilistic model<br /><sup><sub>Zhanxiong Wu, Xuanheng Chen, Sangma Xie, Jian Shen, Yu Zeng</sup></sub> | BSPC<br />2023 | Paper/ |
2023/03 | - | Bayesian MRI reconstruction with joint uncertainty estimation using diffusion models<br /><sup><sub>Guanxiong Luo, Moritz Blumenthal, Martin Heide, Martin Uecker</sup></sub> | MRM<br />2023 | Paper/ |
2022/09 | MC-DDPM | Measurement-Conditioned Denoising Diffusion Probabilistic Model for Under-Sampled Medical Image Reconstruction<br /><sup><sub>Yutong Xie, Quanzheng Li</sup></sub> | MICCAI<br />2022 | Paper/Code |
2022/09 | DiffuseRecon | Towards Performant and Reliable Undersampled MR Reconstruction via Diffusion Model Sampling<br /><sup><sub>Cheng Peng, Pengfei Guo, S. Kevin Zhou, Vishal M. Patel & Rama Chellappa</sup></sub> | MICCAI<br />2022 | Paper/Code |
2022/07 | AdaDiff | Adaptive Diffusion Priors for Accelerated MRI Reconstruction<br /><sup><sub>Alper Güngör, Salman UH Dar, Şaban Öztürk, Yilmaz Korkmaz, Gokberk Elmas, Muzaffer Özbey, Tolga Çukur</sup></sub> | MedIA<br />2023 | Paper/Code |
2021/10 | Score-MRI | Score-based diffusion models for accelerated MRI<br /><sup><sub>Hyungjin Chung, Jong Chul Ye</sup></sub> | MedIA<br />2022 | Paper/Code |
2021/08 | CSGM | Robust Compressed Sensing MRI with Deep Generative Priors<br /><sup><sub>Alper Güngör, Salman UH Dar, Şaban Öztürk, Yilmaz Korkmaz, Gokberk Elmas, Muzaffer Özbey, Tolga Çukur</sup></sub> | NeurIPS<br />2021 | Paper/Code |
<a id="2.1.2">2.1.2 X-ray-based</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/10 | - | Diffusion-Based Generative Image Outpainting for Recovery of FOV-Truncated CT Images<br /><sup><sub>Michelle Espranita Liman, Daniel Rueckert, Florian J. Fintelmann, Philip Müller</sup></sub> | MICCAI<br />2024 | Paper/Code |
2024/10 | PrideDiff | PrideDiff: Physics-Regularized Generalized Diffusion Model for CT Reconstruction<br /><sup><sub>Zexin Lu; Qi Gao; Tao Wang; Ziyuan Yang; Zhiwen Wang; Hui Yu</sup></sub> | TRPMS<br />2024 | Paper/Code |
2024/10 | - | Ultrafast Short-Arc Diffusion-Based Cone Beam CT Image Reconstruction<br /><sup><sub>Y. FU, H. Zhang, W. Cai, L. Kuo, H. Xie, J.J. Cuaron, L.I. Cervino, J.M. Moran, X. Li1, T. Li</sup></sub> | IJROBP<br />2024 | Paper/ |
2024/09 | RN-SDEs | RN-SDEs: Limited-Angle CT Reconstruction with Residual Null-Space Diffusion Stochastic Differential Equations<br /><sup><sub>Jiaqi Guo, Santiago Lopez-Tapia, Wing Shun Li, Yunnan Wu, Marcelo Carignano, Vadim Backman, Vinayak P. Dravid, Aggelos K. Katsaggelos</sup></sub> | arXiv<br />2024 | Paper/ |
2024/09 | CT-SDM | CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates<br /><sup><sub>Liutao Yang, Jiahao Huang, Guang Yang, Daoqiang Zhang</sup></sub> | arXiv<br />2024 | Paper/ |
2024/08 | - | CT reconstruction using diffusion posterior sampling conditioned on a nonlinear measurement model<br /><sup><sub>Shudong Li, Xiao Jiang, Matthew Tivnan, Grace J. Gang, Yuan Shen, J. Webster Stayman</sup></sub> | SPIE<br />2024 | Paper/ |
2024/08 | DIFR3CT | DIFR3CT: Latent Diffusion for Probabilistic 3D CT Reconstruction from Few Planar X-Rays<br /><sup><sub>Yiran Sun, Hana Baroudi, Tucker Netherton, Laurence Court, Osama Mawlawi, Ashok Veeraraghavan, Guha Balakrishnan</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/08 | FCDM | FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models<br /><sup><sub>Jiaze E, Srutarshi Banerjee, Tekin Bicer, Guannan Wang, Bin Ren</sup></sub> | arXiv<br />2024 | Paper/ |
2024/08 | - | Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models<br /><sup><sub>Sho Ozaki, Shizuo Kaji, Toshikazu Imae, Kanabu Nawa, Hideomi Yamashita, Keiichi Nakagawa</sup></sub> | arXiv<br />2024 | Paper/ |
2024/08 | - | Four-Dimensional Cone-Beam CT Reconstruction via Diffusion Model and Motion Compensation<br /><sup><sub>Xianghong Wang, Zhengwei Ou, Peng Jin, Jiayi Xie, Ze Teng, Lei Xu</sup></sub> | TRPMS<br />2024 | Paper/ |
2024/08 | - | Linear diffusion noise boosted deep image prior for unsupervised sparse-view CT reconstruction<br /><sup><sub>Jia Wu, Xiaoming Jiang, Lisha Zhong, Wei Zheng, Xinwei Li, Jinzhao Lin, Zhangyong Li</sup></sub> | IOP<br />2024 | Paper/ |
2024/07 | DiffRecon | DiffRecon: Diffusion-based CT reconstruction with cross-modal deformable fusion for DR-guided non-coplanar radiotherapy<br /><sup><sub>Jiawei Sun, Nannan Cao, Hui Bi, Liugang Gao, Kai Xie, Tao Lin, Jianfeng Sui, Xinye Ni</sup></sub> | COMPUT. BIOL. MED.<br />2024 | Paper/ |
2024/07 | SAD | Structure-aware diffusion for low-dose CT imaging<br /><sup><sub>Wenchao Du, HuanHuan Cui, LinChao He, Hu Chen, Yi Zhang, Hongyu Yang</sup></sub> | IOP<br />2024 | Paper/ |
2024/06 | PFGDM | Prior frequency guided diffusion model for limited angle (LA)-CBCT reconstruction<br /><sup><sub>Jiacheng Xie, Hua-Chieh Shao, Yunxiang Li, You Zhang</sup></sub> | IOP<br />2024 | Paper/ |
2024/06 | TIFA | Time-reversion Fast-sampling Score-based Model for Limited-angle CT Reconstruction<br /><sup><sub>Yanyang Wang, Zirong Li, Weiwen Wu</sup></sub> | TMI<br />2024 | Paper/Code |
2024/06 | DiffusionBlend | DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion Score Blending for 3D Computed Tomography Reconstruction<br /><sup><sub>Bowen Song, Jason Hu, Zhaoxu Luo, Jeffrey A. Fessler, Liyue Shen</sup></sub> | arXiv<br />2024 | Paper/ |
2024/05 | Blaze3DM | Blaze3DM: Marry Triplane Representation with Diffusion for 3D Medical Inverse Problem Solving<br /><sup><sub>Jia He, Bonan Li, Ge Yang, Ziwen Liu</sup></sub> | arXiv<br />2024 | Paper/ |
2024/05 | PDHG | Physics-informed Score-based Diffusion Model for Limited-angle Reconstruction of Cardiac Computed Tomography<br /><sup><sub>Shuo Han, Yongshun Xu, Dayang Wang, Bahareh Morovati, Li Zhou, Jonathan S. Maltz, Ge Wang, Hengyong Yu</sup></sub> | arXiv<br />2024 | Paper/ |
2024/05 | - | Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography<br /><sup><sub>Kangjun Guo, Zhiyuan Zheng, Wenhua Zhong, Zilong Li, Guijun Wang,Jiang Li, Yubin Cao,Yiguang Wang,Jiabin Lin, Qiegen Liu, XianLin Song</sup></sub> | Photoacoustics<br />2024 | Paper/ |
2024/05 | CDDM | Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction<br /><sup><sub>Hanyu Chen, Zhixiu Hao, Lin Guo, Liying Xiao</sup></sub> | arXiv<br />2024 | Paper/ |
2024/05 | MSDiff | MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction<br /><sup><sub>Pinhuang Tan, Mengxiao Geng, Jingya Lu, Liu Shi, Bin Huang, Qiegen Liu</sup></sub> | arXiv<br />2024 | Paper/ |
2024/04 | - | Iterative reconstruction for limited-angle CT using implicit neural representation<br /><sup><sub>Jooho Lee, Jongduk Baek</sup></sub> | IOP<br />2024 | Paper/ |
2024/04 | DPER | DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction<br /><sup><sub>Chenhe Du, Xiyue Lin, Qing Wu, Xuanyu Tian, Ying Su, Zhe Luo, Rui Zheng, Yang Chen, Hongjiang Wei, S. Kevin Zhou, Jingyi Yu, Yuyao Zhang</sup></sub> | arXiv<br />2024 | Paper/ |
2024/04 | - | An interactive method based on multi-objective optimization for limited-angle CT reconstruction<br /><sup><sub>Chengxiang Wang, Yuanmei Xia, Jiaxi Wang, Kequan Zhao, Wei Peng, Wei Yu</sup></sub> | IOP<br />2024 | Paper/ |
2024/04 | - | Fourier diffusion for sparse CT reconstruction<br /><sup><sub>Anqi Liu, Grace J. Gang, J. Webster Stayman</sup></sub> | SPIE<br />2024 | Paper/ |
2024/03 | DE-CBCT | Dual-Energy Cone-Beam CT Using Two Complementary Limited-Angle Scans with A Projection-Consistent Diffusion Model<br /><sup><sub>Junbo Peng, Chih-Wei Chang, Richard L.J. Qiu, Tonghe Wang, Justin Roper, Beth Ghavidel, Xiangyang Tang, Xiaofeng Yang</sup></sub> | arXiv<br />2024 | Paper/ |
2024/03 | cDDPM | Using denoising diffusion probabilistic models to enhance quality of limited-view photoacoustic tomography<br /><sup><sub>Bruno De Santi, Navchetan Awasthi, Srirang Manohar</sup></sub> | SPIE<br />2024 | Paper/ |
2024/03 | - | Image reconstruction based on nonlinear diffusion model for limited-angle computed tomography<br /><sup><sub>Xuying Zhao1, Wenjin Jiang, Xinting Zhang, Wenxiu Guo, Yunsong Zhao, Xing Zhao</sup></sub> | IOP<br />2024 | Paper/ |
2024/02 | - | Image Domain Ultra-Sparse View CT Artifact Removal Via Conditional Denoising Diffusion Probability Model<br /><sup><sub>Feixiang Zhao, Jianchao Zhao, Mingzhe Liu</sup></sub> | ICCPR<br />2024 | Paper/ |
2024/02 | WISM | Wavelet-Inspired Multi-channel Score-based Model for Limited-angle CT Reconstruction<br /><sup><sub>Jianjia Zhang, Haiyang Mao, Xinran Wang, Yuan Guo, Weiwen Wu</sup></sub> | TMI<br />2024 | Paper/ |
2024/01 | SWORD | Stage-by-stage Wavelet Optimization Refinement Diffusion Model for Sparse-View CT Reconstruction<br /><sup><sub>Kai Xu, Shiyu Lu, Bin Huang, Weiwen Wu, Qiegen Liu</sup></sub> | TMI<br />2024 | Paper/ |
2023/12 | HD-DCDM | HD-DCDM: Hybrid-domain network for limited-angle computed tomography with deconvolution and conditional diffusion model<br /><sup><sub>Jianyu Wang, Rongqian Wang1, Lide Cai, Xintong Liu1, Guochang Lin1, Fukai Chen1, Lingyun Qiu</sup></sub> | AMMC<br />2023 | Paper/ |
2023/10 | - | Enhancing the Resolution of Micro-CT Images of Rock Samples via Unsupervised Machine Learning based on a Diffusion Model<br /><sup><sub>Zhaoyang Ma, Shuyu Sun, Bicheng Yan, Hyung Kwak, Jun Gao</sup></sub> | SPEATCE<br />2023 | Paper/ |
2023/08 | - | Generative Modeling in Sinogram Domain for Sparse-View CT Reconstruction<br /><sup><sub>Bing Guan, Cailian Yang, Liu Zhang, Shanzhou Niu, Minghui Zhang, Yuhao Wang</sup></sub> | TRPMS<br />2023 | Paper/ |
2023/07 | HGU | Fast and Stable Diffusion Inverse Solver with History Gradient Update<br /><sup><sub>Linchao He, Hongyu Yan, Mengting Luo, Hongjie Wu, Kunming Luo, Wang Wang, Wenchao Du, Hu Chen, Hongyu Yang, Yi Zhang, Jiancheng Lv</sup></sub> | arXiv<br />2023 | Paper/ |
2022/11 | DOLCE | DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction<br /><sup><sub>Jiaming Liu, Rushil Anirudh, Jayaraman J. Thiagarajan, Stewart He, K. Aditya Mohan, Ulugbek S. Kamilov, Hyojin Kim</sup></sub> | ICCV<br />2023 | Paper/Code |
2022/11 | DiffusionMBIR | Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models<br /><sup><sub>Hyungjin Chung, Dohoon Ryu, Michael T. McCann, Marc L. Klasky, Jong Chul Ye</sup></sub> | CVPR<br />2023 | Paper/Code |
2022/01 | MCG | Improving diffusion models for inverse problems using manifold constraints<br /><sup><sub>Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, Jong Chul Ye</sup></sub> | NeurIPS<br />2022 | Paper/Code |
<a id="2.1.3">2.1.3 Multi-modal</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/10 | PASTA | PASTA: Pathology-Aware MRI to PET CroSs-modal TrAnslation with Diffusion Models<br /><sub>Yitong Li, Igor Yakushev, Dennis M. Hedderich, Christian Wachinger</sub> | MICCAI<br />2024 | Paper/Code |
2024/07 | Joint diffusion | Joint diffusion: mutual consistency-driven diffusion model for PET-MRI co-reconstruction<br /><sub>Taofeng Xie, Zhuo-Xu Cui, Chen Lu, Huayu Wang, Congcong Liu, Yuanzhi Zhang, Xuemei Wang, Yanjie Zhu, Guoqing Chen, Dong Liang</sub> | IOP<br />2024 | Paper/ |
2024/05 | FICD | Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI<br /><sub>Minhui Yu, Mengqi Wu, Ling Yue, Andrea Bozoki, Mingxia Liu</sub> | arXiv<br />2024 | Paper/ |
2023/06 | SynDiff | Unsupervised Medical Image Translation With Adversarial Diffusion Models<br /><sub>Muzaffer Özbey; Onat Dalmaz; Salman U. H. Dar; Hasan A. Bedel; Şaban Özturk; Alper Güngör</sub> | TMI<br />2023 | Paper/Code |
2023/04 | FGDM | Zero-shot Medical Image Translation via Frequency-Guided Diffusion Models<br /><sup><sub>Yunxiang Li, Hua-Chieh Shao, Xiao Liang, Liyuan Chen, Ruiqi Li, Steve Jiang, Jing Wang, You Zhang</sup></sub> | TMI<br />2023 | Paper/ |
2022/09 | - | Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models<br /><sup><sub>Qing Lyu, Ge Wang</sup></sub> | arXiv<br />2022 | Paper/ |
2022/07 | UMM-CSGM | A Novel Unified Conditional Score-based Generative Framework for Multi-modal Medical Image Completion<br /><sup><sub>Xiangxi Meng, Yuning Gu, Yongsheng Pan, Nizhuan Wang, Peng Xue, Mengkang Lu, Xuming He, Yiqiang Zhan, Dinggang Shen</sup></sub> | arXiv<br />2022 | Paper/ |
<a id="2.1.4">2.1.4 Other Modalities</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/10 | MCAD | MCAD: Multi-modal Conditioned Adversarial Diffusion Model for High-Quality PET Image Reconstruction<br /><sup><sub>Jiaqi Cui, Xinyi Zeng, Pinxian Zeng, Bo Liu, Xi Wu, Jiliu Zhou, Yan Wang</sup></sub> | MICCAI <br />2024 | Paper/ |
2024/08 | PET-CM | Full-dose whole-body PET synthesis from low-dose PET using high-efficiency denoising diffusion probabilistic model: PET consistency model<br /><sup><sub>Shaoyan Pan, Elham Abouei, Junbo Peng, Joshua Qian, Jacob F Wynne, Tonghe Wang, Chih-Wei Chang, Justin Roper, Jonathon A Nye, Hui Mao, Xiaofeng Yang</sup></sub> | Medical Physics<br />2024 | Paper/Code |
2024/04 | Entropy-SDE | Equipping Diffusion Models with Differentiable Spatial Entropy for Low-Light Image Enhancement<br /><sup><sub>Wenyi Lian, Wenjing Lian, Ziwei Luo</sup></sub> | CVPRW<br />2024 | Paper/Code |
2024/02 | - | Dehazing Ultrasound using Diffusion Models<br /><sup><sub>Tristan S.W. Stevens, Faik C. Meral, Jason Yu, Iason Z. Apostolakis, Jean-Luc Robert, Ruud J.G. Van Sloun</sup></sub> | TMI<br />2024 | Paper/ |
2023/10 | LLCaps | LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion<br /><sup><sub>Tristan S.W. Stevens, Faik C. Meral, Jason Yu, Iason Z. Apostolakis, Jean-Luc Robert, Ruud J.G. Van Sloun</sup></sub> | MICCAI <br />2023 | Paper/Code |
2023/10 | CPDM | Content-Preserving Diffusion Model for Unsupervised AS-OCT Image Despeckling<br /><sup><sub>Sanqian Li, Risa Higashita, Huazhu Fu, Heng Li, Jingxuan Niu, Jiang Liu</sup></sub> | MICCAI <br />2023 | Paper/ |
2023/10 | PET-Diffusion | PET-Diffusion: Unsupervised PET Enhancement Based on the Latent Diffusion Model<br /><sup><sub>Caiwen Jiang, Yongsheng Pan, Mianxin Liu, Lei Ma, Xiao Zhang, Jiameng Liu, Xiaosong Xiong, Dinggang Shen</sup></sub> | MICCAI <br />2023 | Paper/Code |
2023/10 | - | PET image denoising based on denoising diffusion probabilistic model<br /><sup><sub>Kuang Gong, Keith Johnson, Georges El Fakhri, Quanzheng Li, Tinsu Pan</sup></sub> | EJNMMI<br />2024 | Paper/ |
2023/10 | PET-Reconstruction | Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine PET Reconstruction<br /><sup><sub>Zeyu Han, Yuhan Wang, Luping Zhou, Peng Wang, Binyu Yan, Jiliu Zhou, Yan Wang, Dinggang Shen</sup></sub> | MICCAI <br />2023 | Paper/Code |
2022/09 | PET-DDM | PET image denoising based on denoising diffusion probabilistic models<br /><sup><sub>Kuang Gong, Keith A. Johnson, Georges El Fakhri, Quanzheng Li, Tinsu Pan</sup></sub> | Eur. J. Nucl. Med. Mol. Imaging<br />2023 | Paper/ |
2022/04 | OCT-DDPM | Unsupervised denoising of retinal OCT with diffusion probabilistic model<br /><sup><sub>Dewei Hu, Yuankai K. Tao, Ipek Oguz</sup></sub> | SPIE<br />2022 | Paper/Code |
2022/01 | DenoOCT-DDPM | Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model<br /><sup><sub>Dewei Hu, Yuankai K. Tao, Ipek Oguz</sup></sub> | SPIE<br />2022 | Paper/Code |
<a id="2.2">2.2 Diffusion Models In Remote Sensing For Low-level Vision Tasks</a>
<a id="2.2.1">2.2.1 Visible-light Remote Sensing Image</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/12 | EVADM | Effective variance attention-enhanced diffusion model for crop field aerial image super resolution<br /><sup><sub>Xiangyu Lu, Jianlin Zhang, Rui Yang , Qina Yang , Mengyuan Chen , Hongxing Xu, Pinjun Wan, Jiawen Guo , Fei Liu</sup></sub> | ISPRS<br />2024 | Paper/Code |
2024/09 | FastDiffSR | A Conditional Diffusion Model With Fast Sampling Strategy for Remote Sensing Image Super-Resolution<br /><sup><sub>Fanen Meng; Yijun Chen; Haoyu Jing; Laifu Zhang; Yiming Yan; Yingchao Ren</sup></sub> | TGRS<br />2024 | Paper/Code |
2024/09 | - | Clouds and Haze Co-Removal Based on Weight-Tuned Overlap Refinement Diffusion Model for Remote Sensing Images<br /><sup><sub>Jingxuan Zhang; Libao Zhang</sup></sub> | ICIP<br />2024 | Paper/ |
2024/07 | RSSRDiff | RSSRDiff: An Effective Diffusion Probability Model with Attention for Single Remote Sensing Image Super-Resolution<br /><sup><sub>Tian Wei, Hanyi Zhang, Jin Xu, Jing Zhao, Fei Shen</sup></sub> | ICIC<br />2024 | Paper/ |
2024/06 | - | Diffusion Enhancement for Cloud Removal in Ultra-Resolution Remote Sensing Imagery<br /><sup><sub>Jialu Sui; Yiyang Ma; Wenhan Yang; Xiaokang Zhang; Man-On Pun; Jiaying Liu</sup></sub> | TGRS<br />2024 | Paper/Code |
2024/06 | CLDiff | CLDiff: Weakly Supervised Cloud Detection With Denoising Diffusion Probabilistic Models | TGRS<br />2024 | Paper/Code |
2024/05 | SGDM | Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior<br /><sup><sub>Ce Wang, Wanjie Sun</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/05 | ShipinSight | Ship in Sight: Diffusion Models for Ship-Image Super Resolution<br /><sup><sub>Luigi Sigillo, Riccardo Fosco Gramaccioni, Alessandro Nicolosi, Danilo Comminiello</sup></sub> | WCCI<br />2024 | Paper/Code |
2024/05 | RSHazeDiff | RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing<br /><sup><sub>Jiamei Xiong, Xuefeng Yan, Yongzhen Wang, Wei Zhao, Xiao-Ping Zhang, Mingqiang Wei</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/03 | ASDDPM | Adaptive Semantic-Enhanced Denoising Diffusion Probabilistic Model for Remote Sensing Image Super-Resolution<br /><sup><sub>Jialu Sui, Xianping Ma, Xiaokang Zhang, Man-On Pun</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/03 | IDF-CR | IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-Sensing Images<br /><sup><sub>Meilin Wang; Yexing Song; Pengxu Wei; Xiaoyu Xian; Yukai Shi; Liang Lin</sup></sub> | TGRS<br />2024 | Paper/Code |
2024/03 | DiffALS | Denoising Diffusion Probabilistic Model with Adversarial Learning for Remote Sensing Super-Resolution<br /><sup><sub>Jialu Sui,Qianqian Wu, Man-On Pun</sup></sub> | Remote Sensing<br />2024 | Paper/ |
2024/02 | ADND-Net | Diffusion Models Based Null-Space Learning for Remote Sensing Image Dehazing<br /><sup><sub>Yufeng Huang; Zhiyu Lin; Shuai Xiong; Tongtong Sun</sup></sub> | LGRS<br />2024 | Paper |
2024/02 | DiffCR | DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal From Optical Satellite Images<br /><sup><sub>Xuechao Zou; Kai Li; Junliang Xing; Yu Zhang; Shiying Wang; Lei Jin</sup></sub> | TGRS<br />2024 | Paper/Code |
2024/02 | TCDM | TCDM: Effective Large-Factor Image Super-Resolution via Texture Consistency Diffusion<br /><sup><sub>Yan Zhang; Hanqi Liu; Zhenghao Li; Xinbo Gao; Guangyao Shi; Jianan Jiang</sup></sub> | TGRS<br />2024 | Paper/ |
2023/11 | LWTDM | Efficient Remote Sensing Image Super-Resolution via Lightweight Diffusion Models<br /><sup><sub>Tai An; Bin Xue; Chunlei Huo; Shiming Xiang</sup></sub> | LGRS<br />2023 | Paper/Code |
2023/10 | EDiffSR | EDiffSR: An Efficient Diffusion Probabilistic Model for Remote Sensing Image Super-Resolution<br /><sup><sub>Yi Xiao, Qiangqiang Yuan, Kui Jiang, Jiang He, Xianyu Jin, Liangpei Zhang</sup></sub> | TGRS<br />2024 | Paper/Code |
2023/08 | DDSR | Dual-Diffusion: Dual Conditional Denoising Diffusion Probabilistic Models for Blind Super-Resolution Reconstruction in RSIs<br /><sup><sub>Mengze Xu, Jie Ma, Yuanyuan Zhu</sup></sub> | LGRS<br />2024 | Paper/Code |
2023/07 | EHC-DMSR | Enhancing Remote Sensing Image Super-Resolution with Efficient Hybrid Conditional Diffusion Model<br /><sup><sub>Lintao Han,Yuchen Zhao, Hengyi Lv, Yisa Zhang, Hailong Liu, Guoling Bi, Qing Han</sup></sub> | Remote Sensing<br />2023 | Paper/ |
2023/09 | RSDiff | RSDiff: Remote Sensing Image Generation from Text Using Diffusion Model<br /><sup><sub>Ahmad Sebaq, Mohamed ElHelw</sup></sub> | arXiv<br />2023 | Paper/ |
2023/08 | ARDD-Net | Remote Sensing Image Dehazing Using Adaptive Region-Based Diffusion Models<br /><sup><sub>Y Huang, S Xiong</sup></sub> | LGRS<br />2023 | Paper/ |
2023/02 | TESR | TESR: Two-Stage Approach for Enhancement and Super-Resolution of Remote Sensing Images<br /><sup><sub>Anas M. Ali, Bilel Benjdira, Anis Koubaa, Wadii Boulila, Walid El-Shafai</sup></sub> | Remote Sensing<br />2023 | Paper/Code |
2022/09 | PSSR | Diffusion Model with Detail Complement for Super-Resolution of Remote Sensing<br /><sup><sub>Liu, Jinzhe and Yuan, Zhiqiang and Pan, Zhaoying and Fu, Yiqun and Liu, Li and Lu, Bin</sup></sub> | Remote Sensing<br />2022 | Paper/ |
<a id="2.2.2">2.2.2 HSI</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/11 | STFDiff | STFDiff: Remote sensing image spatiotemporal fusion with diffusion models<br /><sub>He Huang, Wei He, Hongyan Zhang, Yu Xia, Liangpei Zhang</sub> | Inf. Fusion<br />2024 | Paper/Code |
2024/11 | MTLSC-Diff | MTLSC-Diff: Multitask learning with diffusion models for hyperspectral image super-resolution and classification<br /><sub>Jiahui Qu, Liusheng Xiao, Wenqian Dong, Yunsong Li</sub> | Knowledge-Based Systems<br />2024 | Paper |
2024/09 | Diff-Unmix | Unmixing Diffusion for Self-Supervised Hyperspectral Image Denoising<br /><sup><sub>Haijin Zeng; Jiezhang Cao; Kai Zhang; Yongyong Chen; Hiep Luong; Wilfried Philips</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/08 | SCDM | Spectral-Cascaded Diffusion Model for Remote Sensing Image Spectral Super-Resolution<br /><sup><sub>Bowen Chen; Liqin Liu; Chenyang Liu; Zhengxia Zou; Zhenwei Shi</sup></sub> | TGRS<br />2024 | Paper/Code |
2024/08 | SDP | A Spectral Diffusion Prior for Unsupervised Hyperspectral Image Super-Resolution<br /><sup><sub>Jianjun Liu; Zebin Wu; Liang Xiao</sup></sub> | TGRS<br />2024 | Paper/Code |
2024/07 | PLRDiff | Unsupervised hyperspectral pansharpening via low-rank diffusion model<br /><sup><sub>Xiangyu Rui, Xiangyong Cao, Li Pang, Zeyu Zhu, Zongsheng Yue, Deyu Meng</sup></sub> | Information Fusion 2024 | Paper/Code |
2024/05 | ISPDiff | ISPDiff: Interpretable Scale-Propelled Diffusion Model for Hyperspectral Image Super-Resolution<br /><sup><sub>Wenqian Dong; Sen Liu; Song Xiao; Jiahui Qu; Yunsong Li</sup></sub> | TGRS<br />2024 | Paper/Code |
2024/04 | DMSANet | A Diffusion Model-Assisted Multiscale Spectral Attention Network for Hyperspectral Image Super-Resolution <br /><sup><sub>Kaiqi He; Yiheng Cai; Shengjun Peng; Meiling Tan</sup></sub> | JSTARS<br />2024 | Paper |
2024/03 | DMGASR | Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder Super-resolution Network<br /><sup><sub>Zhaoyang Wang, Dongyang Li, Mingyang Zhang†, Hao Luo, Maoguo Gong</sup></sub> | AAAI<br />2024 | Paper/Code |
2024/02 | HIR-Diff | HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models<br /><sup><sub>Li Pang, Xiangyu Rui, Long Cui, Hongzhong Wang, Deyu Meng, Xiangyong Cao</sup></sub> | CVPR<br />2024 | Paper/Code |
2024/02 | CFMDM | CFMDM: Coarse-to-Fine Meta-Diffusion Model for Scale-Arbitrary Hyperspectral Super-Resolution<br /><sup><sub>Jizhou Cui; Wenqian Dong; Jiahui Qu; Xiaoyang Wu; Song Xiao; Yunsong Li</sup></sub> | LGRS<br />2024 | Paper/ |
2024/01 | SatDiffMoE | SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models<br /><sub>Zhaoxu Luo, Bowen Song, Liyue Shen</sub> | arXiv<br />2024 | Paper/ |
2023/11 | TDiffDe | TDiffDe: A Truncated Diffusion Model for Remote Sensing Hyperspectral Image Denoising<br /><sub>Jiang He, Yajie Li, Jie L, Qiangqiang Yuan</sub> | arXiv<br />2024 | Paper/ |
2023/07 | DDPM-Fus | Hyperspectral and Multispectral Image Fusion Using the Conditional Denoising Diffusion Probabilistic Model<br /><sup><sub>Shuaikai Shi, Lijun Zhang, Jie Chen</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/07 | - | A Noise-Model-Free Hyperspectral Image Denoising Method Based on Diffusion Model<br /><sup><sub>Deng, Keli and Jiang, Zhongshun and Qian, Qipeng and Qiu, Yi and Qian, Yuntao</sup></sub> | IGASS<br />2023 | Paper/ |
2023/07 | R2H-CCD | R2H-CCD: Hyperspectral Imagery Generation from RGB Images Based on Conditional Cascade Diffusion Probabilistic Models<br /><sup><sub>Zhang, Lei and Luo, Xiaoyan and Li, Sen and Shi, Xiaofeng</sup></sub> | IGASS<br />2023 | Paper/ |
2023/03 | DDS2M | DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for Hyperspectral Image Restoration<br /><sup><sub>Yuchun Miao, Lefei Zhang, Liangpei Zhang, Dacheng Tao</sup></sub> | ICCV<br />2023 | Paper/Code |
2023/01 | HSR-Diff | HSR-Diff:Hyperspectral Image Super-Resolution via Conditional Diffusion Models<br /><sup><sub>Chanyue Wu, Dong Wang, Hanyu Mao, Ying Li</sup></sub> | ICCV<br />2023 | Paper/ |
<a id="2.2.3">2.2.3 SAR</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/01 | Ship-Go | Ship-Go: SAR Ship Images Inpainting via instance-to-image Generative Diffusion Models<br /><sub>Xin Zhang, Yang Li, Feng Li , Hangzhi Jiang, Yanhua Wang , Liang Zhang , Le Zheng, Zegang Ding</sub> | ISPRS<br />2024 | Paper/Code |
2024/09 | R-DDPM | SAR Despeckling Via Regional Denoising Diffusion Probabilistic Model<br /><sub>Xuran Hu; Ziqiang Xu; Zhihan Chen; Zhenpeng Feng; Mingzhe Zhu; Ljubiša Stanković</sub> | IGASS<br />2024 | Paper/ |
2024/06 | - | Despeckling SAR Images With Log-Yeo–Johnson Transformation and Conditional Diffusion Models<br /><sub>Yaobin Ma; Peng Ke; Hossein Aghababaei; Ling Chang; Jingbo Wei</sub> | TGRS<br />2024 | Paper/ |
2023/07 | - | Unsupervised SAR Despeckling Based on Diffusion Model<br /><sup><sub>Xiao, Siyao and Huang, Libing and Zhang, Shunsheng</sup></sub> | IGASS<br />2023 | Paper/ |
2023/08 | - | Diffusion Models for Interferometric Satellite Aperture Radar<br /><sup><sub>Alexandre Tuel, Thomas Kerdreux, Claudia Hulbert, Bertrand Rouet-Leduc</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/06 | - | SAR Despeckling using a Denoising Diffusion Probabilistic Model<br /><sup><sub>Malsha V. Perera, Nithin Gopalakrishnan Nair, Wele Gedara Chaminda Bandara, Vishal M. Patel</sup></sub> | LGRS<br />2023 | Paper/Code |
<a id="2.2.4">2.2.4 Multi-modal</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/10 | - | Binary Diffusion Method for Image Fusion with Despeckling<br /><sup><sub>Chenlin Zhang; Yajun Chang; Yuhang Wu; Zelong Wang</sup></sub> | AIPMV<br />2024 | Paper/ |
2024/09 | - | SAR to Optical Image Translation with Color Supervised Diffusion Model<br /><sup><sub>Xinyu Bai; Feng Xu</sup></sub> | IGARSS<br />2024 | Paper/ |
2024/08 | - | Learning SAR-to-Optical Image Translation via Diffusion Models With Color Memory<br /><sup><sub>Zhe Guo; Jiayi Liu; Qinglin Cai; Zhibo Zhang; Shaohui Mei</sup></sub> | JSTARS<br />2024 | Paper/ |
2024/07 | DDSR | DDSR: Degradation-Aware Diffusion Model for Spectral Reconstruction from RGB Images<br /><sup><sub>Yunlai Chen, Xiaoyan Zhang</sup></sub> | Remote Sensing<br />2024 | Paper/ |
2024/04 | - | Variational Diffusion Method for Remote Sensing Image Fusion<br /><sup><sub>Chenlin Zhang; Jialing Han; Jubo Zhu; Zelong Wang</sup></sub> | LGRS<br />2024 | Paper/ |
2024/01 | - | A brain-inspired approach for SAR-to-optical image translation based on diffusion models<br /><sup><sub>Hao Shi, Zihan Cui, Liang Chen, ingfei He, Jingyi Yang</sup></sub> | FRONT NEUROSCI-SWITZ<br />2024 | Paper/ |
2023/11 | - | Conditional Diffusion for SAR to Optical Image Translation<br /><sub>Xinyu Bai; Xinyang Pu; Feng Xu</sub> | LGRS<br />2024 | Paper/ |
2023/10 | DCDMF | Hyperspectral and Panchromatic Images Fusion Based on the Dual Conditional Diffusion Models<br /><sup><sub>Shuangliang Li; Siwei Li; Lihao Zhang</sup></sub> | TGRS<br />2024 | Paper/Code |
2023/07 | - | Improved Flood Insights: Diffusion-Based SAR to EO Image Translation<br /><sup><sub>Minseok Seo, Youngtack Oh, Doyi Kim, Dongmin Kang, Yeji Choi</sup></sub> | arXiv<br />2023 | Paper/ |
2023/04 | - | Cloud Removal in Remote Sensing Using Sequential-Based Diffusion Models<br /><sup><sub>Zhao, Xiaohu and Jia, Kebin</sup></sub> | Remote Sensing<br />2023 | Paper/ |
2023/04 | DDRF | DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion<br /><sup><sub>ZiHan Cao, ShiQi Cao, Xiao Wu, JunMing Hou, Ran Ran, Liang-Jian Deng</sup></sub> | arXiv<br />2023 | Paper/ |
2023/03 | DDPM-CR | Denoising Diffusion Probabilistic Feature-Based Network for Cloud Removal in Sentinel-2 Imagery<br /><sup><sub>Jing, Ran and Duan, Fuzhou and Lu, Fengxian and Zhang, Miao and Zhao, Wenji</sup></sub> | Remote Sensing<br />2023 | Paper/ |
<a id="2.3">2.3 Varied Low-level Vision Tasks In Video Through Diffusion Models</a>
<a id="2.3.1">2.3.1 Video Frame Prediction and Interpolation</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/09 | ExtDM | ExtDM: Distribution Extrapolation Diffusion Model for Video Prediction<br /><sup><sub>Zhicheng Zhang, Junyao Hu, Wentao Cheng, Danda Paudel, Jufeng Yang</sup></sub> | CVPR<br />2024 | Paper/ |
2024/08 | EasyControl | EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation<br /><sup><sub>Cong Wang, Jiaxi Gu, Panwen Hu, Haoyu Zhao, Yuanfan Guo, Jianhua Han, Hang Xu, Xiaodan Liang</sup></sub> | arXiv<br />2024 | Paper/ |
2024/04 | MADiff | Motion-aware Latent Diffusion Models for Video Frame Interpolation<br /><sup><sub>Zhilin Huang, Yijie Yu, Ling Yang, Chujun Qin, Bing Zheng, Xiawu Zheng, Zikun Zhou, Yaowei Wang, Wenming Yang</sup></sub> | arXiv<br />2024 | Paper/ |
2024/04 | VIDIM | Video Interpolation with Diffusion Models<br /><sup><sub>Siddhant Jain, Daniel Watson, Eric Tabellion, Aleksander Hołyński, Ben Poole, Janne Kontkanen</sup></sub> | CVPR<br />2023 | Paper/ |
2024/03 | STDiff | STDiff: Spatio-Temporal Diffusion for Continuous Stochastic Video Prediction<br /><sup><sub>Xi Ye, Guillaume-Alexandre Bilodeau</sup></sub> | AAAI<br />2024 | Paper/Code |
2024/01 | AID | AID: Adapting Image2Video Diffusion Models for Instruction-guided Video Prediction<br /><sup><sub>Zhen Xing, Qi Dai, Zejia Weng, Zuxuan Wu, Yu-Gang Jiang</sup></sub> | arXiv<br />2024 | Paper/ |
2023/05 | Seer | Seer: Language Instructed Video Prediction with Latent Diffusion Models<br /><sup><sub>Xianfan Gu, Chuan Wen, Weirui Ye, Jiaming Song, Yang Gao</sup></sub> | arXiv<br />2023 | Paper/ |
2023/10 | SEINE | SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction<br /><sup><sub>Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang, Dahua Lin, Yu Qiao, Ziwei Liu</sup></sub> | ICLR<br />2024 | Paper/Project |
2023/03 | LDMVFI | LDMVFI: Video Frame Interpolation with Latent Diffusion Models<br /><sup><sub>Duolikun Danier, Fan Zhang, David Bull</sup></sub> | arXiv<br />2023 | Paper/Code |
2022/06 | RaMViD | Diffusion Models for Video Prediction and Infilling<br /><sup><sub>Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, Andrea Dittadi</sup></sub> | TMLR<br />2022 | Paper/ |
2022/05 | MCVD | MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation<br /><sup><sub>Vikram Voleti, Alexia Jolicoeur-Martineau, Christopher Pal</sup></sub> | NeurIPS<br />2022 | Paper/Code |
2022/03 | RVD | Diffusion Probabilistic Modeling for Video Generation<br /><sup><sub>Ruihan Yang, Prakhar Srivastava, Stephan Mandt</sup></sub> | Entropy<br />2023 | Paper/Code |
<a id="2.3.2">2.3.2 Super Resolution For Video Generation</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/06 | HPDM | Hierarchical Patch Diffusion Models for High-Resolution Video Generation<br /><sup><sub>Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, Sergey Tulyakov</sup></sub> | CVPR<br />2024 | Paper/Project |
2024/03 | SATeCo | Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution<br /><sup><sub>Zhikai Chen, Fuchen Long, Zhaofan Qiu, Ting Yao, Wengang Zhou, Jiebo Luo, Tao Mei</sup></sub> | CVPR<br />2024 | Paper/ |
2024/01 | - | Inflation with Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution<br /><sup><sub>Xin Yuan, Jinoo Baek, Keyang Xu, Omer Tov, Hongliang Fei</sup></sub> | WACV<br />2024 | Paper/ |
2023/12 | Upscale-A-Video | Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution<br /><sup><sub>Shangchen Zhou, Peiqing Yang, Jianyi Wang, Yihang Luo, Chen Change Loy</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/12 | MGLD-VSR | Motion-Guided Latent Diffusion for Temporally Consistent Real-world Video Super-resolution<br /><sup><sub>Xi Yang, Chenhang He, Jianqi Ma, Lei Zhang</sup></sub> | ECCV<br />2024 | Paper/Code |
2023/11 | StableVSR | Enhancing Perceptual Quality in Video Super-Resolution through Temporally-Consistent Detail Synthesis using Diffusion Models<br /><sup><sub>Claudio Rota, Marco Buzzelli, Joost van de Weijer</sup></sub> | ECCV<br />2024 | Paper/Code |
2023/09 | LAVIE | LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models<br /><sup><sub>Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming Jiang, Cunjian Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, Ziwei Liu</sup></sub> | arXiv<br />2023 | Paper/Code |
2023/05 | PYoCo | Preserve Your Own Correlation: A Noise Prior for Video Diffusion Models<br /><sup><sub>Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs, Jia-Bin Huang, Ming-Yu Liu, Yogesh Balaji</sup></sub> | ICCV<br />2023 | Paper/Demo |
2023/05 | VideoFusion | VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation<br /><sup><sub>Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, Tieniu Tan</sup></sub> | CVPR<br />2023 | Paper/ |
2023/04 | - | Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models<br /><sup><sub>Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, Karsten Kreis</sup></sub> | CVPR<br />2023 | Paper/Demo |
<a id="2.3.3">2.3.3 Video Restoration</a>
Release | Method | Title | Pub. | Link |
---|---|---|---|---|
2024/08 | VD-Diff | Rethinking Video Deblurring with Wavelet-Aware Dynamic Transformer and Diffusion Model<br /><sup><sub>Chen Rao, Guangyuan Li, Zehua Lan, Jiakai Sun, Junsheng Luan, Wei Xing, Lei Zhao, Huaizhong Lin, Jianfeng Dong, Dalong Zhang</sup></sub> | ECCV<br />2024 | Paper/Code |
2024/08 | - | Nonlinear Reaction-Diffusion Based Video Restoration Technique for Noise Mixtures<br /><sup><sub>Tudor Barbu, Costică Moroşanu</sup></sub> | ICIEA<br />2024 | Paper/ |
2024/07 | DiffIR2VR-Zero | DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models<br /><sup><sub>Chang-Han Yeh, Chin-Yang Lin, Zhixiang Wang, Chi-Wei Hsiao, Ting-Hsuan Chen, Yu-Lun Liu</sup></sub> | arXiv<br />2024 | Paper/Code |
2024/07 | - | Zero-shot Video Restoration and Enhancement Using Pre-Trained Image Diffusion Model<br /><sup><sub>Cong Cao, Huanjing Yue, Xin Liu, Jingyu Yang</sup></sub> | arXiv<br />2024 | Paper/ |
2024/03 | DiffTTA | Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for Video Adverse Weather Removal<br /><sup><sub>Yijun Yang, Hongtao Wu, Angelica I. Aviles-Rivero, Yulun Zhang, Jing Qin, Lei Zhu</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/12 | AVID | AVID: Any-Length Video Inpainting with Diffusion Model<br /><sup><sub>Zhixing Zhang, Bichen Wu, Xiaoyan Wang, Yaqiao Luo, Luxin Zhang, Yinan Zhao, Peter Vajda, Dimitris Metaxas, Licheng Yu</sup></sub> | CVPR<br />2024 | Paper/Code |
2023/11 | FLAIR | FLAIR: A Conditional Diffusion Framework with Applications to Face Video Restoration<br /><sup><sub>Zihao Zou, Jiaming Liu, Shirin Shoushtari, Yubo Wang, Weijie Gan, Ulugbek S. Kamilov</sup></sub> | arXiv<br />2024 | Paper/ |
<a id="4.">Related Surveys Recommended</a>
Diffusion Models in Low-Level Vision: A Survey<br /> arXiv 2024. [Paper] <br />Jun. 2024<br />
Taming Diffusion Models for Image Restoration: A Review<br /> arXiv 2024. [Paper] <br />Sept. 2024<br />
Diffusion Models Meet Remote Sensing: Principles, Methods, and Perspectives<br /> arXiv 2024. [Paper] <br />Apr. 2024<br />
Diffusion Models, Image Super-Resolution And Everything: A Survey<br /> arXiv 2024. [Paper] <br /> Jan. 2024<br />
State of the Art on Diffusion Models for Visual Computing<br /> arXiv 2023. [Paper]<br /> Oct. 2023<br />
Diffusion Models for Image Restoration and Enhancement -- A Comprehensive Survey.<br /> arXiv 2023. [Paper] <br /> Aug. 2023<br />
Survey on Diverse Image Inpainting using Diffusion Models<br /> PCEMS 2023. [Paper]<br /> Jun. 2023<br />
Diffusion Models for Medical Image Analysis: A Comprehensive Survey<br /> Medical Image Analysis 2023. [Paper]<br /> Nov. 2022<br />
Diffusion Models in Vision: A Survey<br /> TPAMI 2023. [Paper]<br /> Sep. 2022<br />
Diffusion Models: A Comprehensive Survey of Methods and Applications<br /> ACM Computing Surveys 2023. [Paper]<br /> Sep. 2022<br />
<a id="7.">Large-scale datasets for model pre-training</a>
Here, we provide a more comprehensive overview of the commonly used Large-scale datasets for model pre-training in low-level vision tasks.
- ImageNet <br /> ImageNet is a large-scale dataset with over 14 million natural images spanning over 21k classes, termed ImageNet21K. ImageNet1k, serving as a subset of ImageNet21K, has 1k classes with about 1k images per class, often resized to practical dimensions of 224 × 224 or 256 × 256.
- CelebA <br /> CelebA has 200k facial images, each annotated with 40 attributes, featuring 10k celebrities. CelebA-HQ is a subset having 30k high-resolution facial images with a resolution of 1024 × 1024. Enhanced with detailed annotations, CelebAMask-HQ is derived from pixel-wise facial component labeling (face parsing).
- LSUN <br /> LSUN includes 10 scene categories and 20 object categories, each having about 1 million labeled images, typically resized with a shorter edge of 256 pixels and compressed to JPEG image quality of 75.
- AFHQ <br /> AFHQ comprises around 5,000 high-quality animal face images with three categories: cat, dog, and wildlife, each with a resolution of 512 × 512. Current approaches frequently opt to train diffusion models on specific categories, such as cats.
- FFHQ <br /> FFHQ comprises 70k high-resolution facial images with diverse distributions. Existing methods based on pre-trained DMs undergo training on FFHQ and evaluation on CelebA-HQ to showcase their generalizability.
<a id="5.">Datasets for low-level vision tasks</a>
Due to space limitations, we provide a summary of commonly used datasets for several classical natural low-level vision tasks here, including their scales, sources, modalities, and remarks. Clicking on the dataset will redirect you to its download link.
Tasks | Datasets | Scales | Sources | Modalities | Remarks |
---|---|---|---|---|---|
SR | BSD500 | 500 | TPAMI 2010 | Syn | A synthetic benchmark that is initially designed for object contour detection. |
SR | Set14 | 14 | TPAMI 2015 | Syn | Commonly utilized for testing performance of super-resolution algorithms. |
SR | Manga109 | 109 | MTAP 2015 | Syn | Compiled mainly for academic research on Japanese manga media processing. |
SR | General100 | 100 | ECCV 2016 | Syn | Synthesized images in uncompressed BMP format covering various scales. |
SR | DIV2K | 900/100 | NTIRE 2018 | Real | A commonly-used dataset with diverse scenarios and realistic degradations. |
SR | Flickr1024 | 1024 | ICCVW 2019 | Syn | A large-scale stereo image dataset with high-quality pairs and diverse scenarios. |
SR | Urban100 | 100 | CVPR 2019 | Syn | Sourced from urban environments: city streets, buildings, and urban landscapes. |
SR | DRealSR | 31970 | ECCV 2020 | Real | Benchmarks captured by DSLR cameras, circumventing simulated degradation. |
Deblur | GoPro | 2103/1111 | CVPR 2017 | Syn | Acquired by high-speed cameras for video quality assessment and restoration. |
Deblur | HIDE | 8422 | ICCV 2019 | Syn | Cover long-distance and short-distance scenarios degraded by motion blur. |
Deblur | REDS | 270/30 | NTIRE 2019 | Real | Contain 300 video sequences with dynamic duration and varied resolutions. |
Deblur | BSD | 80/20 | ECCV 2020 | Real | Comprise more scenes and use the proposed beam-splitter acquisition system. |
Deblur | RealBlur | 3758/980 | ECCV 2020 | Real | Cover common instances of motion blur, captured in raw and JPEG formats. |
Dehaze | I-Haze | 35 | NTIRE 2018 | Real | Indoor dataset with real haze for objective image dehazing and evaluation. |
Dehaze | O-Haze | 45 | NTIRE 2018 | Real | Outdoor dataset with real haze for objective image dehazing and evaluation. |
Dehaze | Dense-Haze | 33 | ICIP 2019 | Real | Real-world dataset with dense haze for robust single image dehazing methods. |
Dehaze | RESIDE | 13000/990 | TIP 2019 | Syn+Real | Divided into five subsets to highlight diverse sources and heterogeneous contents. |
Dehaze | NH-Haze | 55 | CVRPW 2020 | Real | The first non-homogeneous dehazing dataset with realistic haze distribution. |
Dehaze | Haze-4K | 4000 | MM 2021 | Syn | A large-scale synthetic dataset for image dehazing with varing distributions. |
LLIE | MIT-Fivek | 4500/500 | CVPR 2011 | Syn | A curated dataset of RAW photos adjusted by skilled retouchers for visual appeal. |
LLIE | LOLv1 | 485/15 | BMVC 2018 | Real | The first dataset with image pairs from real scenarios for low-light enhancement. |
LLIE | SID | 5094 | CVPR 2018 | Real | A dataset of raw short-exposure images with their long-exposure reference images. |
LLIE | SICE | 589 | TIP 2018 | Syn | A large-scale multi-exposure image dataset with complex illumination conditions. |
LLIE | ExDark | 7363 | CVIU 2019 | Real | Collected in low-light scenarios with 12 classes and instance-level annotations. |
LLIE | LOLv2-Real | 689/100 | TIP 2021 | Real | A three-step shooting strategy is used to eliminate intra-pair image misalignments. |
LLIE | LOLv2-Syn | 900/100 | TIP 2021 | Syn | Synthetic dark images mimic real low-light photography via histogram analysis. |
LLIE | SDSD-Indoor | 62/6 | ICCV 2021 | Real | Indoor dataset collected from dynamic scenes under varying lighting conditions. |
LLIE | SDSD-Outdoor | 116/10 | ICCV 2021 | Real | Outdoor dataset collected from dynamic scenes under varying lighting conditions. |
Derain | Rain100H | 1800/100 | CVPR 2017 | Syn | Comprise synthetic datasets with five types of rain streaks for rain removal. |
Derain | RainDrop | 861/239 | CVPR 2018 | Syn | Image pairs with raindrop degradation, captured using the setup of dual glasses. |
Derain | SPA-Data | 638492/1000 | CVPR 2019 | Real | Design a semi-automatic method to generate clean images from real rain streaks. |
Derain | MPID | 3961/419 | CVPR 2019 | Syn+Real | A large-scale benchmark that focuses on driving and surveillance scenarios. |
Derain | RainCityscapes | 9432/1188 | CVPR 2019 | Syn | A famous rain removal dataset with paired depth maps for outdoor scenarios. |
Derain | RainDS | 3450/900 | CVPR 2021 | Syn+Real | A hybrid dataset with both real and synthesized data under diverse scenarios. |
Derain | RainDirection | 2920/430 | ICCV 2021 | Syn | A large-scale synthetic rainy dataset with directional labels in the training phase. |
Derain | GT-RAIN | 28217/2100 | ECCV 2022 | Real | The first paired derain dataset with real data by controlling non-rain variations. |
Desnow | Snow100k | 100000 | TIP 2018 | Syn+Real | A large-scale dataset with over 1k real-world images degraded by heavy snow. |
Desnow | SRRS | 16000 | ECCV 2020 | Syn+Real | A hybrid snow dataset with 15k synthesized images and 1k real-world images. |
Desnow | CSD | 10000 | ICCV 2021 | Syn | A large-scale desnowing dataset to comprehensively simulate snow scenarios. |
<a id="6.">Evaluation metrics</a>
Due to space limitations, we only introduced the evaluation metrics involved in the comparative experiments in the survey. Here, we provide a more comprehensive overview of the commonly used metrics in low-level vision tasks.
<a id="6.1"> Distortion-based metrics</a>
- PSNR (Peak Signal to Noise Ratio) <br /> PSNR quantifies the pixel-wise disparity between a corrupted image and its clean image by computing their mean squared error.
- SSIM (Structural Similarity) <br /> SSIM aims to accommodate human visual perception, assesses the likeness between distorted and clean images across three aspects, including contrast, brightness, and structure.
<a id="6.2"> Inception-based metrics</a>
- LPIPS (Learned Perceptual Image Patch Similarity) <br /> LPIPS is a learning-based metric that leverages the pre-trained AlexNet as a feature extractor and adjusts the linear layer to emulate human perception.
- FID (Fréchet inception distance) <br /> FID assesses the fidelity and diversity of generated images by modeling the feature-level multivariate Gaussian distribution of the extracted features, by computing the Fréchet distance of their reference images.
- KID (Kernel Inception Distance) <br /> KID is similar to FID, which also leverages the extracted features for assessment but employs maximum mean discrepancy with a polynomial kernel to measure the distance, showing greater stability in the zero-shot and few-shot conditions. KID, specifically, demonstrates greater stability even with limited samples compared to FID.
- NIQE (Natural Image Quality Evaluator) <br /> A no-reference metric, evaluates the distance between the natural scene statistics of distorted images and natural images modeled with a multivariate Gaussian model.
- DISTS (Deep Image Structure and Texture Similarity) <br /> DISTS notes that texture and structure similarities between two images can be assessed by their feature means and correlations obtained from VGG and thus utilizes an SSIM-like distance measurement within the feature space to determine texture and structure similarities.
- PI <br /> PI is introduced in the PIRM Challenge on perceptual SR, aiming to evaluate the perceptual quality of super-resolved images. Its definition, PI=0.5((10-Ma)+NIQE), incorporates Ma, a no-reference IQA metric for SR.
<a id="Reference">Reference</a>
Awesome-diffusion-low-level-vision-by-yulunzhang
Awesome-low-level-vision-resources
Awesome-Diffusion-Models-in-Medical-Imaging: Diffusion Models in Medical Imaging