Home

Awesome

LLDE: Enhancing Low-light Images With Diffusion Model

Official pytorch implementation of the paper:

- LLDE: Enhancing Low-light Images With Diffusion Model

ICIP2023 | Paper | Bibtex | Poster

(Released on June 28, 2023)

Results

<table border="0" cellspacing="0" cellpadding="0"> <tr> <td align="center"><b>Input Image</td> <td align="center"><b> Enhancement Process</td> <td align="center"><b>Output Image</td> <tr> <td> <img src="assets/input.png" alt="input" ></td> <td> <img src="assets/enhancement.gif" alt="enhancement"></td> <td> <img src="assets/output.png" alt="output"></td> </tr> </table>

Datasets

How to run

Requirements

  1. python 3.10
  2. pytorch == 1.11.0
  3. accelerate == 0.12.0
  4. wandb == 0.12.17 (used in model training)

Pre-trained model

Download the pretrained model and put it into ./checkpoints

Training

Testing

Citation

If you find this work useful for your research, please cite

@article{LLDE,
  inproceedings = {LLDE: Enhancing Low-light Images With Diffusion Model},
  author = {Ooi, Xin Peng and Chan, Chee Seng},
  booktitle = {2023 IEEE international conference on image processing (ICIP)},
  year = {2023}
}

Feedback

Suggestions and opinions on this work (both positive and negative) are greatly welcomed. Please contact the authors by sending an email to 0417oxp at gmail.com or cs.chan at um.edu.my.

License and Copyright

The project is open source under BSD-3 license (see the LICENSE file).

©2023 Universiti Malaya.