Awesome
<center>Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution</center>
<center><a href="https://yingqianwang.github.io" target="_blank">Yingqian Wang</a> <a href="https://longguangwang.github.io/" target="_blank">Longguang Wang</a> Jungang Yang Wei An <a href="http://yulanguo.me/" target="_blank">Yulan Guo</a></center> <br>
<center><img src="pics/Flickr1024.jpg" width="480"></center>
Flickr1024 is a large-scale stereo image dataset which consists of 1024 high-quality image pairs and covers diverse senarios. Details of this dataset can be found in our <a href="http://openaccess.thecvf.com/content_ICCVW_2019/papers/LCI/Wang_Flickr1024_A_Large-Scale_Dataset_for_Stereo_Image_Super-Resolution_ICCVW_2019_paper.pdf">published paper</a>. Although the Flickr1024 dataset was originally developed for stereo image SR (click here for an overview), it was also used for many other tasks such as reference-based SR, stereo matching, and stereo image denoising.<br><br><br>
Sample Images
<br><img src="pics/Sample Images.jpg"><br><br>
Downloads
- The Flickr1024 dataset can be downloaded via <a href="https://pan.baidu.com/s/1YD76gpQ2WjkhjkMnHmU3tQ" target="_blank">Baidu Drive</a> or <a href="https://drive.google.com/file/d/1My6oQaHzclxRrKID-mylvs6Z0d5pT_Cu/view?usp=sharing" target="_blank">Google Drive</a> <br><br>
Notations
- The Flickr1024 dataset is available for non-commercial use only. Therefore, You agree NOT to reproduce, duplicate, copy, sell, trade, or resell any portion of the images and any portion of derived data.
- All images on the Flickr1024 dataset are obtained from <a href="https://flickr.com" target="_blank">Flickr</a> and they are not the property of our laboratory.
- We reserve the right to terminate your access to the Flickr1024 dataset at any time. <br><br>
Acknowledgement
We would like to thank <a href="https://www.flickr.com/photos/stereotron/" target="_blank">Sascha Becher</a> and <a href="https://www.flickr.com/photos/tombentz" target="_blank">Tom Bentz</a> for the approval of using their cross-eye stereo photographs. <br><br>
Citiations
@InProceedings{Flickr1024,
author = {Wang, Yingqian and Wang, Longguang and Yang, Jungang and An, Wei and Guo, Yulan},
title = {Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution},
booktitle = {International Conference on Computer Vision Workshops},
pages = {3852-3857},
month = {Oct},
year = {2019}
}
<br>
Our dataset was used by the following works (selected) for various tasks:
Stereo Image Super-Resolution:
- NAFSSR: Stereo Image Super-Resolution Using NAFNet, CVPRW 2022. [<a href="https://arxiv.org/pdf/2204.08714.pdf" target="_blank">pdf</a>]
- NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results, CVPRW 2022. [<a href="https://arxiv.org/pdf/2204.09197.pdf" target="_blank">pdf</a>]
- Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation, ACM MM 2021. [<a href="https://arxiv.org/pdf/2106.00985.pdf" target="_blank">pdf</a>]
- SA-GNN: Stereo Attention and Graph Neural Network for Stereo Image Super-Resolution, ICIG 2021.
- Enhanced Back Projection Network Based Stereo Image Super-Resolution Considering Parallax Attention, ICIP 2021.
- Symmetric Parallax Attention for Stereo Image Super-Resolution, CVPRW 2021. [<a href="https://arxiv.org/pdf/2011.03802.pdf" target="_blank">pdf</a>], [<a href="https://github.com/YingqianWang/iPASSR" target="_blank">code</a>], [<a href="https://wyqdatabase.s3-us-west-1.amazonaws.com/iPASSR_visual_comparison.mp4" target="_blank">demo</a>], [<a href="https://wyqdatabase.s3.us-west-1.amazonaws.com/Submission_0021_video_presentation.mp4" target="_blank">presentation</a>].
- Cross View Capture for Stereo Image Super-Resolution, TMM 2021. [<a href="https://github.com/xyzhu1/CVCnet" target="_blank">code</a>]
- Deep Bilateral Learning for Stereo Image Super-Resolution, IEEE Signal Processing Letters 2021, [<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9382858" target="_blank">pdf</a>].
- Parallax-based second-order mixed attention for stereo image super-resolution, IET Computer Vision 2021, [<a href="https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12063" target="_blank">pdf</a>].
- A Disparity Feature Alignment Module for Stereo Image Super-Resolution, IEEE Signal Processing Letters 2021.
- Deep Stereoscopic Image Super-Resolution via Interaction Module, TCSVT 2020.
- Parallax Attention for Unsupervised Stereo Correspondence Learning, TPAMI 2020, [<a href="https://arxiv.org/pdf/2009.08250.pdf" target="_blank">pdf</a>], [<a href="https://github.com/LongguangWang/PAM" target="_blank">code</a>].
- Non-Local Nested Residual Attention Network for Stereo Image Super-Resolution, ICASSP 2020, [<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9054687" target="_blank">pdf</a>].
- Stereoscopic Image Super-Resolution with Stereo Consistent Feature, AAAI 2020. [<a href="https://aaai.org/ojs/index.php/AAAI/article/view/6880/6734" target="_blank">pdf</a>].
- A Stereo Attention Module for Stereo Image Super-Resolution, IEEE Signal Processing Letters 2020. [<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8998204" target="_blank">pdf</a>], [<a href="https://github.com/XinyiYing/SAM" target="_blank">code</a>].
- Learning Parallax Attention for Stereo Image Super-resolution, CVPR 2019. [<a href="https://arxiv.org/pdf/1903.05784.pdf" target="_blank">pdf</a>], [<a href="https://github.com/LongguangWang/PASSRnet" target="_blank">code</a>].
Stereo Video Super-Resolution:
- Stereo Video Super-Resolution via Exploiting View-Temporal Correlations, ACM MM 2021.
Stereo Matching:
- Learning Stereo from Single Images, ECCV 2020, [<a href="https://arxiv.org/pdf/2008.01484.pdf" target="_blank">pdf</a>].
Stereo Image Denoising:
- Joint Denoising of Stereo Images Using 3D CNN, ISICV 2020.
Stereo Color Mismatch Correction:
- Deep Color Mismatch Correction in Stereoscopic 3D Images, ICIP 2021.
Stereo Color Transfer:
- Asymmetric stereo color transfer, ICME 2021.
Reference-based Image Super-Resolution:
- Feature Representation Matters: End-to-End Learning for Reference-based Image Super-resolution, ECCV 2020, [<a href="http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123490222.pdf" target="_blank">pdf</a>].
Single Image Denoising:
- Self-Convolution: A Highly-Efficient Operator for Non-Local Image Restoration, arXiv 2020, [<a href="https://arxiv.org/pdf/2006.13714.pdf" target="_blank">pdf</a>].
- Image Denoising Using a Novel Deep Generative Network with Multiple Target Images and Adaptive Termination Condition, Applied Science, [<a href="https://www.mdpi.com/2076-3417/11/11/4803/htm" target="_blank">pdf</a>]
Other Tasks:
- Reversible data hiding in encrypted images without additional information transmission, Signal Processing: Image Communication 2022.
- Adaptive Actor-Critic Bilateral Filter, ICASSP 2022.
- IICNet: A Generic Framework for Reversible Image Conversion, ICCV 2021, [<a href="https://arxiv.org/pdf/2109.04242.pdf" target="_blank">pdf</a>], [<a href="https://github.com/felixcheng97/IICNet" target="_blank">code</a>].
- Mononizing Binocular Videos, ACM Transactions on Graphics 2020, [<a href="https://arxiv.org/pdf/2009.01424.pdf" target="_blank">pdf</a>].
- Convolutional Neural Networks: A Binocular Vision Perspective, arXiv 2019. [<a href="https://arxiv.xilesou.top/pdf/1912.10201.pdf" target="_blank">pdf</a>].
- Holopix50k: A Large-Scale In-the-wild Stereo Image Dataset, arXiv 2020, [<a href="https://arxiv.org/pdf/2003.11172.pdf" target="_blank">pdf</a>].<br><br>
Contact
Any question regarding this work can be addressed to wangyingqian16@nudt.edu.cn.<br><br><br>
<a href='https://clustrmaps.com/site/1bffp' title='Visit tracker'><img src='//clustrmaps.com/map_v2.png?cl=ffffff&w=600&t=tt&d=MaBzJxwcJLRriYjIQM7YievKCbZukY_u6HBrzaibiTM'/></a>