Home

Awesome

<p align="center"> <img src="assets/logo.png" width="400"> </p>

DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

Paper | Project Page

visitors Open in OpenXLab Open In Colab Try a demo on Replicate

Xinqi Lin<sup>1,*</sup>, Jingwen He<sup>2,3,*</sup>, Ziyan Chen<sup>1</sup>, Zhaoyang Lyu<sup>2</sup>, Bo Dai<sup>2</sup>, Fanghua Yu<sup>1</sup>, Wanli Ouyang<sup>2</sup>, Yu Qiao<sup>2</sup>, Chao Dong<sup>1,2</sup>

<sup>1</sup>Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences<br><sup>2</sup>Shanghai AI Laboratory<br><sup>3</sup>The Chinese University of Hong Kong

<p align="center"> <img src="assets/teaser.png"> </p>
<p align="center"> <img src="assets/pipeline.png"> </p>

:star:If DiffBIR is helpful for you, please help star this repo. Thanks!:hugs:

:book:Table Of Contents

<a name="update"></a>:new:Update

<a name="visual_results"></a>:eyes:Visual Results On Real-world Images

Blind Image Super-Resolution

<img src="assets/visual_results/bsr6.png" height="223px"/> <img src="assets/visual_results/bsr7.png" height="223px"/> <img src="assets/visual_results/bsr4.png" height="223px"/>

<!-- [<img src="assets/visual_results/bsr1.png" height="223px"/>](https://imgsli.com/MTk5ODIy) [<img src="assets/visual_results/bsr2.png" height="223px"/>](https://imgsli.com/MTk5ODIz) [<img src="assets/visual_results/bsr3.png" height="223px"/>](https://imgsli.com/MTk5ODI0) [<img src="assets/visual_results/bsr5.png" height="223px"/>](https://imgsli.com/MjAxMjM0) --> <!-- [<img src="assets/visual_results/bsr1.png" height="223px"/>](https://imgsli.com/MTk5ODIy) [<img src="assets/visual_results/bsr5.png" height="223px"/>](https://imgsli.com/MjAxMjM0) -->

Blind Face Restoration

<!-- [<img src="assets/visual_results/bfr1.png" height="223px"/>](https://imgsli.com/MTk5ODI5) [<img src="assets/visual_results/bfr2.png" height="223px"/>](https://imgsli.com/MTk5ODMw) [<img src="assets/visual_results/bfr4.png" height="223px"/>](https://imgsli.com/MTk5ODM0) -->

<img src="assets/visual_results/whole_image1.png" height="370"/> <img src="assets/visual_results/whole_image2.png" height="370"/>

:star: Face and the background enhanced by DiffBIR.

Blind Image Denoising

<img src="assets/visual_results/bid1.png" height="215px"/> <img src="assets/visual_results/bid3.png" height="215px"/> <img src="assets/visual_results/bid2.png" height="215px"/>

8x Blind Super-Resolution With Tiled Sampling

I often think of Bag End. I miss my books and my arm chair, and my garden. See, that's where I belong. That's home. --- Bilbo Baggins

<img src="assets/visual_results/tiled_sampling.png" height="480px"/>

<a name="todo"></a>:climbing:TODO

<a name="installation"></a>:gear:Installation

# clone this repo
git clone https://github.com/XPixelGroup/DiffBIR.git
cd DiffBIR

# create environment
conda create -n diffbir python=3.10
conda activate diffbir
pip install -r requirements.txt

Our new code is based on pytorch 2.2.2 for the built-in support of memory-efficient attention. If you are working on a GPU that is not compatible with the latest pytorch, just downgrade pytorch to 1.13.1+cu116 and install xformers 0.0.16 as an alternative.

<!-- Note the installation is only compatible with **Linux** users. If you are working on different platforms, please check [xOS Installation](assets/docs/installation_xOS.md). -->

<a name="quick_start"></a>:flight_departure:Quick Start

Run the following command to interact with the gradio website.

# For low-VRAM users, set captioner to ram or none
python run_gradio.py --captioner llava
<div align="center"> <kbd><img src="assets/gradio.png"></img></kbd> </div>

<a name="pretrained_models"></a>:dna:Pretrained Models

Here we list pretrained weight of stage 2 model (IRControlNet) and our trained SwinIR, which was used for degradation removal during the training of stage 2 model.

Model NameDescriptionHuggingFaceBaiduNetdiskOpenXLab
v2.1.ptIRControlNet trained on filtered unsplashdownloadN/AN/A
v2.pthIRControlNet trained on filtered laion2b-endownloaddownload<br>(pwd: xiu3)download
v1_general.pthIRControlNet trained on ImageNet-1kdownloaddownload<br>(pwd: 79n9)download
v1_face.pthIRControlNet trained on FFHQdownloaddownload<br>(pwd: n7dx)download
codeformer_swinir.ckptSwinIR trained on ImageNet-1k with CodeFormer degradationdownloaddownload<br>(pwd: vfif)download
realesrgan_s4_swinir_100k.pthSwinIR trained on ImageNet-1k with Real-ESRGAN degradationdownloadN/AN/A

During inference, we use off-the-shelf models from other papers as the stage 1 model: BSRNet for BSR, SwinIR-Face used in DifFace for BFR, and SCUNet-PSNR for BID, while the trained IRControlNet remains unchanged for all tasks. Please check code for more details. Thanks for their work!

<a name="inference"></a>:crossed_swords:Inference

We provide some examples for inference, check inference.py for more arguments. Pretrained weights will be automatically downloaded. For users with limited VRAM, please run the following scripts with tiled sampling.

Blind Image Super-Resolution

# DiffBIR v2 (ECCV paper version)
python -u inference.py \
--task sr \
--upscale 4 \
--version v2 \
--sampler spaced \
--steps 50 \
--captioner none \
--pos_prompt '' \
--neg_prompt 'low quality, blurry, low-resolution, noisy, unsharp, weird textures' \
--cfg_scale 4 \
--input inputs/demo/bsr \
--output results/v2_demo_bsr \
--device cuda --precision fp32

# DiffBIR v2.1
python -u inference.py \
--task sr \
--upscale 4 \
--version v2.1 \
--captioner llava \
--cfg_scale 8 \
--noise_aug 0 \
--input inputs/demo/bsr \
--output results/v2.1_demo_bsr

Blind Aligned-Face Restoration

<a name="inference_fr"></a>

# DiffBIR v2 (ECCV paper version)
python -u inference.py \
--task face \
--upscale 1 \
--version v2 \
--sampler spaced \
--steps 50 \
--captioner none \
--pos_prompt '' \
--neg_prompt 'low quality, blurry, low-resolution, noisy, unsharp, weird textures' \
--cfg_scale 4.0 \
--input inputs/demo/bfr/aligned \
--output results/v2_demo_bfr_aligned \
--device cuda --precision fp32

# DiffBIR v2.1
python -u inference.py \
--task face \
--upscale 1 \
--version v2.1 \
--captioner llava \
--cfg_scale 8 \
--noise_aug 0 \
--input inputs/demo/bfr/aligned \
--output results/v2.1_demo_bfr_aligned

Blind Unaligned-Face Restoration

# DiffBIR v2 (ECCV paper version)
python -u inference.py \
--task face_background \
--upscale 2 \
--version v2 \
--sampler spaced \
--steps 50 \
--captioner none \
--pos_prompt '' \
--neg_prompt 'low quality, blurry, low-resolution, noisy, unsharp, weird textures' \
--cfg_scale 4.0 \
--input inputs/demo/bfr/whole_img \
--output results/v2_demo_bfr_unaligned \
--device cuda --precision fp32

# DiffBIR v2.1
python -u inference.py \
--task face_background \
--upscale 2 \
--version v2.1 \
--captioner llava \
--cfg_scale 8 \
--noise_aug 0 \
--input inputs/demo/bfr/whole_img \
--output results/v2.1_demo_bfr_unaligned

Blind Image Denoising

# DiffBIR v2 (ECCV paper version)
python -u inference.py \
--task denoise \
--upscale 1 \
--version v2 \
--sampler spaced \
--steps 50 \
--captioner none \
--pos_prompt '' \
--neg_prompt 'low quality, blurry, low-resolution, noisy, unsharp, weird textures' \
--cfg_scale 4.0 \
--input inputs/demo/bid \
--output results/v2_demo_bid \
--device cuda --precision fp32

# DiffBIR v2.1
python -u inference.py \
--task denoise \
--upscale 1 \
--version v2.1 \
--captioner llava \
--cfg_scale 8 \
--noise_aug 0 \
--input inputs/demo/bid \
--output results/v2.1_demo_bid

Custom-model Inference

python -u inference.py \
--upscale 4 \
--version custom \
--train_cfg [path/to/training/config] \
--ckpt [path/to/saved/checkpoint] \
--captioner llava \
--cfg_scale 8 \
--noise_aug 0 \
--input inputs/demo/bsr \
--output results/custom_demo_bsr

Other options

Tiled sampling

<a name="patch_based_sampling"></a>

Add the following arguments to enable tiled sampling:

[command...] \
# tiled inference for stage-1 model
--cleaner_tiled \
--cleaner_tile_size 256 \
--cleaner_tile_stride 128 \
# tiled inference for VAE encoding
--vae_encoder_tiled \
--vae_encoder_tile_size 256 \
# tiled inference for VAE decoding
--vae_decoder_tiled \
--vae_decoder_tile_size 256 \
# tiled inference for diffusion process
--cldm_tiled \
--cldm_tile_size 512 \
--cldm_tile_stride 256

Tiled sampling supports super-resolution with a large scale factor on low-VRAM graphics cards. Our tiled sampling is built upon mixture-of-diffusers and Tiled-VAE. Thanks for their work!

<!-- #### Restoration Guidance Restoration guidance is used to achieve a trade-off bwtween quality and fidelity. We default to closing it since we prefer quality rather than fidelity. Here is an example: ```shell python -u inference.py \ --version v2 \ --task sr \ --upscale 4 \ --cfg_scale 4.0 \ --input inputs/demo/bsr \ --guidance --g_loss w_mse --g_scale 0.5 --g_space rgb \ --output results/demo_bsr_wg \ --device cuda ``` You will see that the results become more smooth. -->

Condition as Start Point of Sampling

This option only works with DiffBIR v1 and v2. As proposed in SeeSR, the LR embedding (LRE) strategy provides a more faithful start point for sampling and consequently suppresses the artifacts in flat region:

[command...] --start_point_type cond

For our model, we use the diffused condition as start point. This option makes the results more stable and ensures that the outcomes from ODE samplers like DDIM and DPMS are normal. However, it may lead to a decrease in sample quality.

<a name="train"></a>:stars:Train

Stage 1

First, we train a SwinIR, which will be used for degradation removal during the training of stage 2.

<a name="gen_file_list"></a>

  1. Generate file list of training set and validation set, a file list looks like:

    /path/to/image_1
    /path/to/image_2
    /path/to/image_3
    ...
    

    You can write a simple python script or directly use shell command to produce file lists. Here is an example:

    # collect all iamge files in img_dir
    find [img_dir] -type f > files.list
    # shuffle collected files
    shuf files.list > files_shuf.list
    # pick train_size files in the front as training set
    head -n [train_size] files_shuf.list > files_shuf_train.list
    # pick remaining files as validation set
    tail -n +[train_size + 1] files_shuf.list > files_shuf_val.list
    
  2. Fill in the training configuration file with appropriate values.

  3. Start training!

    accelerate launch train_stage1.py --config configs/train/train_stage1.yaml
    

Stage 2

  1. Download pretrained Stable Diffusion v2.1 to provide generative capabilities. :bulb:: If you have ran the inference script, the SD v2.1 checkpoint can be found in weights.

    wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt --no-check-certificate
    
  2. Generate file list as mentioned above. Currently, the training script of stage 2 doesn't support validation set, so you only need to create training file list.

  3. Fill in the training configuration file with appropriate values.

  4. Start training!

    accelerate launch train_stage2.py --config configs/train/train_stage2.yaml
    

Citation

Please cite us if our work is useful for your research.

@misc{lin2024diffbir,
      title={DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior}, 
      author={Xinqi Lin and Jingwen He and Ziyan Chen and Zhaoyang Lyu and Bo Dai and Fanghua Yu and Wanli Ouyang and Yu Qiao and Chao Dong},
      year={2024},
      eprint={2308.15070},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is released under the Apache 2.0 license.

Acknowledgement

This project is based on ControlNet and BasicSR. Thanks for their awesome work.

Contact

If you have any questions, please feel free to contact with me at linxinqi23@mails.ucas.ac.cn.