Home

Awesome

<div align="center"> <img width="100%" src="https://user-images.githubusercontent.com/27466624/222385101-516e551c-49f5-480d-a135-4b24ee6dc308.png"/> <div>&nbsp;</div> <div align="center"> <b><font size="5">OpenMMLab website</font></b> <sup> <a href="https://openmmlab.com"> <i><font size="4">HOT</font></i> </a> </sup> &nbsp;&nbsp;&nbsp;&nbsp; <b><font size="5">OpenMMLab platform</font></b> <sup> <a href="https://platform.openmmlab.com"> <i><font size="4">TRY IT OUT</font></i> </a> </sup> </div> <div>&nbsp;</div>

PyPI docs deploy codecov license open issues issue resolution

๐Ÿ“˜Documentation | ๐Ÿ› ๏ธInstallation | ๐Ÿ‘€Model Zoo | ๐Ÿ†•Update News | ๐Ÿค”Reporting Issues

</div> <div align="center">

English | ็ฎ€ไฝ“ไธญๆ–‡

</div> <div align="center"> <a href="https://openmmlab.medium.com/" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a> </div>

๐Ÿ“„ Table of Contents

๐Ÿฅณ ๐Ÿš€ What's New ๐Ÿ”

๐Ÿ’Ž v0.6.0 was released on 15/8/2023:

For release history and update details, please refer to changelog.

โœจ Highlight ๐Ÿ”

We are excited to announce our latest work on real-time object recognition tasks, RTMDet, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the technical report. Pre-trained models are here.

PWC PWC PWC

TaskDatasetAPFPS(TRT FP16 BS1 3090)
Object DetectionCOCO52.8322
Instance SegmentationCOCO44.6188
Rotated Object DetectionDOTA78.9(single-scale)/81.3(multi-scale)121
<div align=center> <img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/> </div>

MMYOLO currently implements the object detection and rotated object detection algorithm, but it has a significant training acceleration compared to the MMDeteciton version. The training speed is 2.6 times faster than the previous version.

๐Ÿ“– Introduction ๐Ÿ”

MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and MMDetection. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.6+. <img src="https://user-images.githubusercontent.com/45811724/190993591-bd3f1f11-1c30-4b93-b5f4-05c9ff64ff7f.gif"/>

<details open> <summary>Major features</summary> <img src="https://user-images.githubusercontent.com/27466624/199999337-0544a4cb-3cbd-4f3e-be26-bcd9e74db7ff.jpg" alt="BaseModule-P5"/> The figure above is contributed by RangeKing@GitHub, thank you very much!

And the figure of P6 model is in model_design.md.

</details>

๐Ÿ› ๏ธ Installation ๐Ÿ”

MMYOLO relies on PyTorch, MMCV, MMEngine, and MMDetection. Below are quick steps for installation. Please refer to the Install Guide for more detailed instructions.

conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .

๐Ÿ‘จโ€๐Ÿซ Tutorial ๐Ÿ”

MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read MMDetection Overview for the first understanding of MMDetection.

The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about MMDetection User Guide and Advanced Guide.

For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our documentation.

<details> <summary>Get Started</summary> </details> <details> <summary>Recommended Topics</summary> </details> <details> <summary>Common Usage</summary> </details> <details> <summary>Useful Tools</summary> </details> <details> <summary>Basic Tutorials</summary> </details> <details> <summary>Advanced Tutorials</summary> </details> <details> <summary>Descriptions</summary> </details>

๐Ÿ“Š Overview of Benchmark and Model Zoo ๐Ÿ”

<div align=center> <img src="https://user-images.githubusercontent.com/17425982/222087414-168175cc-dae6-4c5c-a8e3-3109a152dd19.png"/> </div>

Results and models are available in the model zoo.

<details open> <summary><b>Supported Tasks</b></summary> </details> <details open> <summary><b>Supported Algorithms</b></summary> </details> <details open> <summary><b>Supported Datasets</b></summary> </details> <details open> <div align="center"> <b>Module Components</b> </div> <table align="center"> <tbody> <tr align="center" valign="bottom"> <td> <b>Backbones</b> </td> <td> <b>Necks</b> </td> <td> <b>Loss</b> </td> <td> <b>Common</b> </td> </tr> <tr valign="top"> <td> <ul> <li>YOLOv5CSPDarknet</li> <li>YOLOv8CSPDarknet</li> <li>YOLOXCSPDarknet</li> <li>EfficientRep</li> <li>CSPNeXt</li> <li>YOLOv7Backbone</li> <li>PPYOLOECSPResNet</li> <li>mmdet backbone</li> <li>mmcls backbone</li> <li>timm</li> </ul> </td> <td> <ul> <li>YOLOv5PAFPN</li> <li>YOLOv8PAFPN</li> <li>YOLOv6RepPAFPN</li> <li>YOLOXPAFPN</li> <li>CSPNeXtPAFPN</li> <li>YOLOv7PAFPN</li> <li>PPYOLOECSPPAFPN</li> </ul> </td> <td> <ul> <li>IoULoss</li> <li>mmdet loss</li> </ul> </td> <td> <ul> </ul> </td> </tr> </td> </tr> </tbody> </table> </details>

โ“ FAQ ๐Ÿ”

Please refer to the FAQ for frequently asked questions.

๐Ÿ™Œ Contributing ๐Ÿ”

We appreciate all contributions to improving MMYOLO. Ongoing projects can be found in our GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.

๐Ÿค Acknowledgement ๐Ÿ”

MMYOLO is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new detectors.

<div align="center"> <a href="https://github.com/open-mmlab/mmyolo/graphs/contributors"><img src="https://contrib.rocks/image?repo=open-mmlab/mmyolo"/></a> </div>

๐Ÿ–Š๏ธ Citation ๐Ÿ”

If you find this project useful in your research, please consider citing:

@misc{mmyolo2022,
    title={{MMYOLO: OpenMMLab YOLO} series toolbox and benchmark},
    author={MMYOLO Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmyolo}},
    year={2022}
}

๐ŸŽซ License ๐Ÿ”

This project is released under the GPL 3.0 license.

๐Ÿ—๏ธ Projects in OpenMMLab ๐Ÿ”