Home

Awesome

<div align="center"> <img src="resources/mmpt-logo.png" width="600"/> <div>&nbsp;</div> <div align="center"> <b><font size="5">OpenMMLab website</font></b> <sup> <a href="https://openmmlab.com"> <i><font size="4">HOT</font></i> </a> </sup> &nbsp;&nbsp;&nbsp;&nbsp; <b><font size="5">OpenMMLab platform</font></b> <sup> <a href="https://platform.openmmlab.com"> <i><font size="4">TRY IT OUT</font></i> </a> </sup> </div> <div>&nbsp;</div>

PyPI Docs Build Status codecov license open issues issue resolution

📘 Documentation | 🛠ī¸ Installation | 👀 Model Zoo | 🆕 Update News | 🤔 Reporting Issues

<img src="https://user-images.githubusercontent.com/36138628/230307505-4727ad0a-7d71-4069-939d-b499c7e272b7.png" width="400"/>

English | įŽ€äŊ“中文

</div> </div> <div align="center"> <a href="https://openmmlab.medium.com/" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a> </div>

Introduction

MMPreTrain is an open source pre-training toolbox based on PyTorch. It is a part of the OpenMMLab project.

The main branch works with PyTorch 1.8+.

Major features

https://github.com/open-mmlab/mmpretrain/assets/26739999/e4dcd3a2-f895-4d1b-a351-fbc74a04e904

What's new

🌟 v1.2.0 was released in 04/01/2023

🌟 v1.1.0 was released in 12/10/2023

🌟 v1.0.0 was released in 04/07/2023

🌟 Upgrade from MMClassification to MMPreTrain

This release introduced a brand new and flexible training & test engine, but it's still in progress. Welcome to try according to the documentation.

And there are some BC-breaking changes. Please check the migration tutorial.

Please refer to changelog for more details and other release history.

Installation

Below are quick steps for installation:

conda create -n open-mmlab python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate open-mmlab
pip install openmim
git clone https://github.com/open-mmlab/mmpretrain.git
cd mmpretrain
mim install -e .

Please refer to installation documentation for more detailed installation and dataset preparation.

For multi-modality models support, please install the extra dependencies by:

mim install -e ".[multimodal]"

User Guides

We provided a series of tutorials about the basic usage of MMPreTrain for new users:

For more information, please refer to our documentation.

Model zoo

Results and models are available in the model zoo.

<div align="center"> <b>Overview</b> </div> <table align="center"> <tbody> <tr align="center" valign="bottom"> <td> <b>Supported Backbones</b> </td> <td> <b>Self-supervised Learning</b> </td> <td> <b>Multi-Modality Algorithms</b> </td> <td> <b>Others</b> </td> </tr> <tr valign="top"> <td> <ul> <li><a href="configs/vgg">VGG</a></li> <li><a href="configs/resnet">ResNet</a></li> <li><a href="configs/resnext">ResNeXt</a></li> <li><a href="configs/seresnet">SE-ResNet</a></li> <li><a href="configs/seresnet">SE-ResNeXt</a></li> <li><a href="configs/regnet">RegNet</a></li> <li><a href="configs/shufflenet_v1">ShuffleNet V1</a></li> <li><a href="configs/shufflenet_v2">ShuffleNet V2</a></li> <li><a href="configs/mobilenet_v2">MobileNet V2</a></li> <li><a href="configs/mobilenet_v3">MobileNet V3</a></li> <li><a href="configs/swin_transformer">Swin-Transformer</a></li> <li><a href="configs/swin_transformer_v2">Swin-Transformer V2</a></li> <li><a href="configs/repvgg">RepVGG</a></li> <li><a href="configs/vision_transformer">Vision-Transformer</a></li> <li><a href="configs/tnt">Transformer-in-Transformer</a></li> <li><a href="configs/res2net">Res2Net</a></li> <li><a href="configs/mlp_mixer">MLP-Mixer</a></li> <li><a href="configs/deit">DeiT</a></li> <li><a href="configs/deit3">DeiT-3</a></li> <li><a href="configs/conformer">Conformer</a></li> <li><a href="configs/t2t_vit">T2T-ViT</a></li> <li><a href="configs/twins">Twins</a></li> <li><a href="configs/efficientnet">EfficientNet</a></li> <li><a href="configs/edgenext">EdgeNeXt</a></li> <li><a href="configs/convnext">ConvNeXt</a></li> <li><a href="configs/hrnet">HRNet</a></li> <li><a href="configs/van">VAN</a></li> <li><a href="configs/convmixer">ConvMixer</a></li> <li><a href="configs/cspnet">CSPNet</a></li> <li><a href="configs/poolformer">PoolFormer</a></li> <li><a href="configs/inception_v3">Inception V3</a></li> <li><a href="configs/mobileone">MobileOne</a></li> <li><a href="configs/efficientformer">EfficientFormer</a></li> <li><a href="configs/mvit">MViT</a></li> <li><a href="configs/hornet">HorNet</a></li> <li><a href="configs/mobilevit">MobileViT</a></li> <li><a href="configs/davit">DaViT</a></li> <li><a href="configs/replknet">RepLKNet</a></li> <li><a href="configs/beit">BEiT</a></li> <li><a href="configs/mixmim">MixMIM</a></li> <li><a href="configs/efficientnet_v2">EfficientNet V2</a></li> <li><a href="configs/revvit">RevViT</a></li> <li><a href="configs/convnext_v2">ConvNeXt V2</a></li> <li><a href="configs/vig">ViG</a></li> <li><a href="configs/xcit">XCiT</a></li> <li><a href="configs/levit">LeViT</a></li> <li><a href="configs/riformer">RIFormer</a></li> <li><a href="configs/glip">GLIP</a></li> <li><a href="configs/sam">ViT SAM</a></li> <li><a href="configs/eva02">EVA02</a></li> <li><a href="configs/dinov2">DINO V2</a></li> <li><a href="configs/hivit">HiViT</a></li> </ul> </td> <td> <ul> <li><a href="configs/mocov2">MoCo V1 (CVPR'2020)</a></li> <li><a href="configs/simclr">SimCLR (ICML'2020)</a></li> <li><a href="configs/mocov2">MoCo V2 (arXiv'2020)</a></li> <li><a href="configs/byol">BYOL (NeurIPS'2020)</a></li> <li><a href="configs/swav">SwAV (NeurIPS'2020)</a></li> <li><a href="configs/densecl">DenseCL (CVPR'2021)</a></li> <li><a href="configs/simsiam">SimSiam (CVPR'2021)</a></li> <li><a href="configs/barlowtwins">Barlow Twins (ICML'2021)</a></li> <li><a href="configs/mocov3">MoCo V3 (ICCV'2021)</a></li> <li><a href="configs/beit">BEiT (ICLR'2022)</a></li> <li><a href="configs/mae">MAE (CVPR'2022)</a></li> <li><a href="configs/simmim">SimMIM (CVPR'2022)</a></li> <li><a href="configs/maskfeat">MaskFeat (CVPR'2022)</a></li> <li><a href="configs/cae">CAE (arXiv'2022)</a></li> <li><a href="configs/milan">MILAN (arXiv'2022)</a></li> <li><a href="configs/beitv2">BEiT V2 (arXiv'2022)</a></li> <li><a href="configs/eva">EVA (CVPR'2023)</a></li> <li><a href="configs/mixmim">MixMIM (arXiv'2022)</a></li> <li><a href="configs/itpn">iTPN (CVPR'2023)</a></li> <li><a href="configs/spark">SparK (ICLR'2023)</a></li> <li><a href="configs/mff">MFF (ICCV'2023)</a></li> </ul> </td> <td> <ul> <li><a href="configs/blip">BLIP (arxiv'2022)</a></li> <li><a href="configs/blip2">BLIP-2 (arxiv'2023)</a></li> <li><a href="configs/ofa">OFA (CoRR'2022)</a></li> <li><a href="configs/flamingo">Flamingo (NeurIPS'2022)</a></li> <li><a href="configs/chinese_clip">Chinese CLIP (arxiv'2022)</a></li> <li><a href="configs/minigpt4">MiniGPT-4 (arxiv'2023)</a></li> <li><a href="configs/llava">LLaVA (arxiv'2023)</a></li> <li><a href="configs/otter">Otter (arxiv'2023)</a></li> </ul> </td> <td> Image Retrieval Task: <ul> <li><a href="configs/arcface">ArcFace (CVPR'2019)</a></li> </ul> Training&Test Tips: <ul> <li><a href="https://arxiv.org/abs/1909.13719">RandAug</a></li> <li><a href="https://arxiv.org/abs/1805.09501">AutoAug</a></li> <li><a href="mmpretrain/datasets/samplers/repeat_aug.py">RepeatAugSampler</a></li> <li><a href="mmpretrain/models/tta/score_tta.py">TTA</a></li> <li>...</li> </ul> </td> </tbody> </table>

Contributing

We appreciate all contributions to improve MMPreTrain. Please refer to CONTRUBUTING for the contributing guideline.

Acknowledgement

MMPreTrain is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and supporting their own academic research.

Citation

If you find this project useful in your research, please consider cite:

@misc{2023mmpretrain,
    title={OpenMMLab's Pre-training Toolbox and Benchmark},
    author={MMPreTrain Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmpretrain}},
    year={2023}
}

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab