Home

Awesome

<div align="center"> <img src="resources/mmdet3d-logo.png" width="600"/> <div>&nbsp;</div> <div align="center"> <b><font size="5">OpenMMLab website</font></b> <sup> <a href="https://openmmlab.com"> <i><font size="4">HOT</font></i> </a> </sup> &nbsp;&nbsp;&nbsp;&nbsp; <b><font size="5">OpenMMLab platform</font></b> <sup> <a href="https://platform.openmmlab.com"> <i><font size="4">TRY IT OUT</font></i> </a> </sup> </div> <div>&nbsp;</div>

PyPI docs badge codecov license open issues issue resolution

๐Ÿ“˜Documentation | ๐Ÿ› ๏ธInstallation | ๐Ÿ‘€Model Zoo | ๐Ÿ†•Update News | ๐Ÿš€Ongoing Projects | ๐Ÿค”Reporting Issues

</div> <div align="center">

English | ็ฎ€ไฝ“ไธญๆ–‡

</div> <div align="center"> <a href="https://openmmlab.medium.com/" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a> </div>

Introduction

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project.

The main branch works with PyTorch 1.8+.

demo image

<details open> <summary>Major features</summary> </details>

Like MMDetection and MMCV, MMDetection3D can also be used as a library to support different projects on top of it.

What's New

Highlight

In version 1.4, MMDetecion3D refactors the Waymo dataset and accelerates the preprocessing, training/testing setup, and evaluation of Waymo dataset. We also extends the support for camera-based, such as Monocular and BEV, 3D object detection models on Waymo. A detailed description of the Waymo data information is provided here.

Besides, in version 1.4, MMDetection3D provides Waymo-mini to help community users get started with Waymo and use it for quick iterative development.

v1.4.0 was released in 8/1/2024๏ผš

v1.3.0 was released in 18/10/2023:

v1.2.0 was released in 4/7/2023

v1.1.1 was released in 30/5/2023:

Installation

Please refer to Installation for installation instructions.

Getting Started

For detailed user guides and advanced guides, please refer to our documentation:

<details> <summary>User Guides</summary> </details> <details> <summary>Advanced Guides</summary> </details>

Overview of Benchmark and Model Zoo

Results and models are available in the model zoo.

<div align="center"> <b>Components</b> </div> <table align="center"> <tbody> <tr align="center" valign="bottom"> <td> <b>Backbones</b> </td> <td> <b>Heads</b> </td> <td> <b>Features</b> </td> </tr> <tr valign="top"> <td> <ul> <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li> <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li> <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li> <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li> <li>DLA (CVPR'2018)</li> <li>MinkResNet (CVPR'2019)</li> <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li> <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li> </ul> </td> <td> <ul> <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li> </ul> </td> <td> <ul> <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li> </ul> </td> </tr> </td> </tr> </tbody> </table> <div align="center"> <b>Architectures</b> </div> <table align="center"> <tbody> <tr align="center" valign="middle"> <td> <b>LiDAR-based 3D Object Detection</b> </td> <td> <b>Camera-based 3D Object Detection</b> </td> <td> <b>Multi-modal 3D Object Detection</b> </td> <td> <b>3D Semantic Segmentation</b> </td> </tr> <tr valign="top"> <td> <li><b>Outdoor</b></li> <ul> <li><a href="configs/second">SECOND (Sensor'2018)</a></li> <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li> <li><a href="configs/ssn">SSN (ECCV'2020)</a></li> <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li> <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li> <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li> <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li> <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li> <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li> <li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li> </ul> <li><b>Indoor</b></li> <ul> <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li> <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li> <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li> <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li> <li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li> </ul> </td> <td> <li><b>Outdoor</b></li> <ul> <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li> <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li> <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li> <li><a href="configs/pgd">PGD (CoRL'2021)</a></li> <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li> <li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li> <li><a href="projects/PETR">PETR (ECCV'2022)</a></li> </ul> <li><b>Indoor</b></li> <ul> <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li> </ul> </td> <td> <li><b>Outdoor</b></li> <ul> <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li> <li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li> </ul> <li><b>Indoor</b></li> <ul> <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li> </ul> </td> <td> <li><b>Outdoor</b></li> <ul> <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li> <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li> <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li> <li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li> </ul> <li><b>Indoor</b></li> <ul> <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li> <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li> <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li> </ul> </ul> </td> </tr> </td> </tr> </tbody> </table>
ResNetVoVNetSwin-TPointNet++SECONDDGCNNRegNetXDLAMinkResNetCylinder3DMinkUNet
SECONDโœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
PointPillarsโœ—โœ—โœ—โœ—โœ“โœ—โœ“โœ—โœ—โœ—โœ—
FreeAnchorโœ—โœ—โœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—
VoteNetโœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—
H3DNetโœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—
3DSSDโœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—
Part-A2โœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
MVXNetโœ“โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
CenterPointโœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
SSNโœ—โœ—โœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—
ImVoteNetโœ“โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—
FCOS3Dโœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—
PointNet++โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—
Group-Free-3Dโœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—
ImVoxelNetโœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—
PAConvโœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—
DGCNNโœ—โœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—
SMOKEโœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—
PGDโœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—
MonoFlexโœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—
SA-SSDโœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
FCAF3Dโœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ“โœ—โœ—
PV-RCNNโœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
Cylinder3Dโœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ“โœ—
MinkUNetโœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ“
SPVCNNโœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ“
BEVFusionโœ—โœ—โœ“โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
CenterFormerโœ—โœ—โœ—โœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—
TR3Dโœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ“โœ—โœ—
DETR3Dโœ“โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—
PETRโœ—โœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—
TPVFormerโœ“โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—โœ—

Note: All the about 500+ models, methods of 90+ papers in 2D detection supported by MMDetection can be trained or used in this codebase.

FAQ

Please refer to FAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMDetection3D. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmdet3d2020,
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab