Home

Awesome

<div align="center"> <img src="resources/mmdet-logo.png" width="600"/> <div>&nbsp;</div> <div align="center"> <b><font size="5">OpenMMLab website</font></b> <sup> <a href="https://openmmlab.com"> <i><font size="4">HOT</font></i> </a> </sup> &nbsp;&nbsp;&nbsp;&nbsp; <b><font size="5">OpenMMLab platform</font></b> <sup> <a href="https://platform.openmmlab.com"> <i><font size="4">TRY IT OUT</font></i> </a> </sup> </div> <div>&nbsp;</div>

PyPI docs badge codecov license open issues issue resolution Open in OpenXLab

📘Documentation | 🛠️Installation | 👀Model Zoo | 🆕Update News | 🚀Ongoing Projects | 🤔Reporting Issues

</div> <div align="center">

English | 简体中文

</div> <div align="center"> <a href="https://openmmlab.medium.com/" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;"> <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a> </div> <div align="center"> <img src="https://github.com/open-mmlab/mmdetection/assets/17425982/6c29886f-ae7a-4a55-8be4-352ee85b7d3e"/> </div>

Introduction

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

The main branch works with PyTorch 1.8+.

<img src="https://user-images.githubusercontent.com/12907710/187674113-2074d658-f2fb-42d1-ac15-9c4a695e64d7.png"/> <details open> <summary>Major features</summary> </details>

Apart from MMDetection, we also released MMEngine for model training and MMCV for computer vision research, which are heavily depended on by this toolbox.

What's New

💎 We have released the pre-trained weights for MM-Grounding-DINO Swin-B and Swin-L, welcome to try and give feedback.

Highlight

v3.3.0 was released in 5/1/2024:

MM-Grounding-DINO: An Open and Comprehensive Pipeline for Unified Object Grounding and Detection

Grounding DINO is a grounding pre-training model that unifies 2d open vocabulary object detection and phrase grounding, with wide applications. However, its training part has not been open sourced. Therefore, we propose MM-Grounding-DINO, which not only serves as an open source replication version of Grounding DINO, but also achieves significant performance improvement based on reconstructed data types, exploring different dataset combinations and initialization strategies. Moreover, we conduct evaluations from multiple dimensions, including OOD, REC, Phrase Grounding, OVD, and Fine-tune, to fully excavate the advantages and disadvantages of Grounding pre-training, hoping to provide inspiration for future work.

code: mm_grounding_dino/README.md

<div align=center> <img src="https://github.com/open-mmlab/mmdetection/assets/17425982/fb14d1ee-5469-44d2-b865-aac9850c429c"/> </div>

We are excited to announce our latest work on real-time object recognition tasks, RTMDet, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the technical report. Pre-trained models are here.

PWC PWC PWC

TaskDatasetAPFPS(TRT FP16 BS1 3090)
Object DetectionCOCO52.8322
Instance SegmentationCOCO44.6188
Rotated Object DetectionDOTA78.9(single-scale)/81.3(multi-scale)121
<div align=center> <img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/> </div>

Installation

Please refer to Installation for installation instructions.

Getting Started

Please see Overview for the general introduction of MMDetection.

For detailed user guides and advanced guides, please refer to our documentation:

We also provide object detection colab tutorial Open in Colab and instance segmentation colab tutorial Open in Colab.

To migrate from MMDetection 2.x, please refer to migration.

Overview of Benchmark and Model Zoo

Results and models are available in the model zoo.

<div align="center"> <b>Architectures</b> </div> <table align="center"> <tbody> <tr align="center" valign="bottom"> <td> <b>Object Detection</b> </td> <td> <b>Instance Segmentation</b> </td> <td> <b>Panoptic Segmentation</b> </td> <td> <b>Other</b> </td> </tr> <tr valign="top"> <td> <ul> <li><a href="configs/fast_rcnn">Fast R-CNN (ICCV'2015)</a></li> <li><a href="configs/faster_rcnn">Faster R-CNN (NeurIPS'2015)</a></li> <li><a href="configs/rpn">RPN (NeurIPS'2015)</a></li> <li><a href="configs/ssd">SSD (ECCV'2016)</a></li> <li><a href="configs/retinanet">RetinaNet (ICCV'2017)</a></li> <li><a href="configs/cascade_rcnn">Cascade R-CNN (CVPR'2018)</a></li> <li><a href="configs/yolo">YOLOv3 (ArXiv'2018)</a></li> <li><a href="configs/cornernet">CornerNet (ECCV'2018)</a></li> <li><a href="configs/grid_rcnn">Grid R-CNN (CVPR'2019)</a></li> <li><a href="configs/guided_anchoring">Guided Anchoring (CVPR'2019)</a></li> <li><a href="configs/fsaf">FSAF (CVPR'2019)</a></li> <li><a href="configs/centernet">CenterNet (CVPR'2019)</a></li> <li><a href="configs/libra_rcnn">Libra R-CNN (CVPR'2019)</a></li> <li><a href="configs/tridentnet">TridentNet (ICCV'2019)</a></li> <li><a href="configs/fcos">FCOS (ICCV'2019)</a></li> <li><a href="configs/reppoints">RepPoints (ICCV'2019)</a></li> <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li> <li><a href="configs/cascade_rpn">CascadeRPN (NeurIPS'2019)</a></li> <li><a href="configs/foveabox">Foveabox (TIP'2020)</a></li> <li><a href="configs/double_heads">Double-Head R-CNN (CVPR'2020)</a></li> <li><a href="configs/atss">ATSS (CVPR'2020)</a></li> <li><a href="configs/nas_fcos">NAS-FCOS (CVPR'2020)</a></li> <li><a href="configs/centripetalnet">CentripetalNet (CVPR'2020)</a></li> <li><a href="configs/autoassign">AutoAssign (ArXiv'2020)</a></li> <li><a href="configs/sabl">Side-Aware Boundary Localization (ECCV'2020)</a></li> <li><a href="configs/dynamic_rcnn">Dynamic R-CNN (ECCV'2020)</a></li> <li><a href="configs/detr">DETR (ECCV'2020)</a></li> <li><a href="configs/paa">PAA (ECCV'2020)</a></li> <li><a href="configs/vfnet">VarifocalNet (CVPR'2021)</a></li> <li><a href="configs/sparse_rcnn">Sparse R-CNN (CVPR'2021)</a></li> <li><a href="configs/yolof">YOLOF (CVPR'2021)</a></li> <li><a href="configs/yolox">YOLOX (CVPR'2021)</a></li> <li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li> <li><a href="configs/tood">TOOD (ICCV'2021)</a></li> <li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li> <li><a href="configs/rtmdet">RTMDet (ArXiv'2022)</a></li> <li><a href="configs/conditional_detr">Conditional DETR (ICCV'2021)</a></li> <li><a href="configs/dab_detr">DAB-DETR (ICLR'2022)</a></li> <li><a href="configs/dino">DINO (ICLR'2023)</a></li> <li><a href="configs/glip">GLIP (CVPR'2022)</a></li> <li><a href="configs/ddq">DDQ (CVPR'2023)</a></li> <li><a href="projects/DiffusionDet">DiffusionDet (ArXiv'2023)</a></li> <li><a href="projects/EfficientDet">EfficientDet (CVPR'2020)</a></li> <li><a href="projects/ViTDet">ViTDet (ECCV'2022)</a></li> <li><a href="projects/Detic">Detic (ECCV'2022)</a></li> <li><a href="projects/CO-DETR">CO-DETR (ICCV'2023)</a></li> </ul> </td> <td> <ul> <li><a href="configs/mask_rcnn">Mask R-CNN (ICCV'2017)</a></li> <li><a href="configs/cascade_rcnn">Cascade Mask R-CNN (CVPR'2018)</a></li> <li><a href="configs/ms_rcnn">Mask Scoring R-CNN (CVPR'2019)</a></li> <li><a href="configs/htc">Hybrid Task Cascade (CVPR'2019)</a></li> <li><a href="configs/yolact">YOLACT (ICCV'2019)</a></li> <li><a href="configs/instaboost">InstaBoost (ICCV'2019)</a></li> <li><a href="configs/solo">SOLO (ECCV'2020)</a></li> <li><a href="configs/point_rend">PointRend (CVPR'2020)</a></li> <li><a href="configs/detectors">DetectoRS (ArXiv'2020)</a></li> <li><a href="configs/solov2">SOLOv2 (NeurIPS'2020)</a></li> <li><a href="configs/scnet">SCNet (AAAI'2021)</a></li> <li><a href="configs/queryinst">QueryInst (ICCV'2021)</a></li> <li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li> <li><a href="configs/condinst">CondInst (ECCV'2020)</a></li> <li><a href="projects/SparseInst">SparseInst (CVPR'2022)</a></li> <li><a href="configs/rtmdet">RTMDet (ArXiv'2022)</a></li> <li><a href="configs/boxinst">BoxInst (CVPR'2021)</a></li> <li><a href="projects/ConvNeXt-V2">ConvNeXt-V2 (Arxiv'2023)</a></li> </ul> </td> <td> <ul> <li><a href="configs/panoptic_fpn">Panoptic FPN (CVPR'2019)</a></li> <li><a href="configs/maskformer">MaskFormer (NeurIPS'2021)</a></li> <li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li> <li><a href="configs/XDecoder">XDecoder (CVPR'2023)</a></li> </ul> </td> <td> </ul> <li><b>Contrastive Learning</b></li> <ul> <ul> <li><a href="configs/selfsup_pretrain">SwAV (NeurIPS'2020)</a></li> <li><a href="configs/selfsup_pretrain">MoCo (CVPR'2020)</a></li> <li><a href="configs/selfsup_pretrain">MoCov2 (ArXiv'2020)</a></li> </ul> </ul> </ul> <li><b>Distillation</b></li> <ul> <ul> <li><a href="configs/ld">Localization Distillation (CVPR'2022)</a></li> <li><a href="configs/lad">Label Assignment Distillation (WACV'2022)</a></li> </ul> </ul> <li><b>Semi-Supervised Object Detection</b></li> <ul> <ul> <li><a href="configs/soft_teacher">Soft Teacher (ICCV'2021)</a></li> </ul> </ul> </ul> </td> </tr> </td> </tr> </tbody> </table> <div align="center"> <b>Components</b> </div> <table align="center"> <tbody> <tr align="center" valign="bottom"> <td> <b>Backbones</b> </td> <td> <b>Necks</b> </td> <td> <b>Loss</b> </td> <td> <b>Common</b> </td> </tr> <tr valign="top"> <td> <ul> <li>VGG (ICLR'2015)</li> <li>ResNet (CVPR'2016)</li> <li>ResNeXt (CVPR'2017)</li> <li>MobileNetV2 (CVPR'2018)</li> <li><a href="configs/hrnet">HRNet (CVPR'2019)</a></li> <li><a href="configs/empirical_attention">Generalized Attention (ICCV'2019)</a></li> <li><a href="configs/gcnet">GCNet (ICCVW'2019)</a></li> <li><a href="configs/res2net">Res2Net (TPAMI'2020)</a></li> <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li> <li><a href="configs/resnest">ResNeSt (ArXiv'2020)</a></li> <li><a href="configs/pvt">PVT (ICCV'2021)</a></li> <li><a href="configs/swin">Swin (CVPR'2021)</a></li> <li><a href="configs/pvt">PVTv2 (ArXiv'2021)</a></li> <li><a href="configs/resnet_strikes_back">ResNet strikes back (ArXiv'2021)</a></li> <li><a href="configs/efficientnet">EfficientNet (ArXiv'2021)</a></li> <li><a href="configs/convnext">ConvNeXt (CVPR'2022)</a></li> <li><a href="projects/ConvNeXt-V2">ConvNeXtv2 (ArXiv'2023)</a></li> </ul> </td> <td> <ul> <li><a href="configs/pafpn">PAFPN (CVPR'2018)</a></li> <li><a href="configs/nas_fpn">NAS-FPN (CVPR'2019)</a></li> <li><a href="configs/carafe">CARAFE (ICCV'2019)</a></li> <li><a href="configs/fpg">FPG (ArXiv'2020)</a></li> <li><a href="configs/groie">GRoIE (ICPR'2020)</a></li> <li><a href="configs/dyhead">DyHead (CVPR'2021)</a></li> </ul> </td> <td> <ul> <li><a href="configs/ghm">GHM (AAAI'2019)</a></li> <li><a href="configs/gfl">Generalized Focal Loss (NeurIPS'2020)</a></li> <li><a href="configs/seesaw_loss">Seasaw Loss (CVPR'2021)</a></li> </ul> </td> <td> <ul> <li><a href="configs/faster_rcnn/faster-rcnn_r50_fpn_ohem_1x_coco.py">OHEM (CVPR'2016)</a></li> <li><a href="configs/gn">Group Normalization (ECCV'2018)</a></li> <li><a href="configs/dcn">DCN (ICCV'2017)</a></li> <li><a href="configs/dcnv2">DCNv2 (CVPR'2019)</a></li> <li><a href="configs/gn+ws">Weight Standardization (ArXiv'2019)</a></li> <li><a href="configs/pisa">Prime Sample Attention (CVPR'2020)</a></li> <li><a href="configs/strong_baselines">Strong Baselines (CVPR'2021)</a></li> <li><a href="configs/resnet_strikes_back">Resnet strikes back (ArXiv'2021)</a></li> </ul> </td> </tr> </td> </tr> </tbody> </table>

Some other methods are also supported in projects using MMDetection.

FAQ

Please refer to FAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMDetection. Ongoing projects can be found in out GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
             Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
             Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
             Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
             Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
             and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
  journal= {arXiv preprint arXiv:1906.07155},
  year={2019}
}

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab