Awesome
<p align="right">English | <a href="docs/CN.md">įŽäŊä¸æ</a></p> <p align="center"> <img src="docs/figs/logo.png" align="center" width="25%"> <h3 align="center"><strong>Benchmarking and Improving Bird's Eye View Perception Robustness</br>in Autonomous Driving</strong></h3> <p align="center"> <a href="https://scholar.google.com/citations?user=s1m55YoAAAAJ" target='_blank'>Shaoyuan Xie</a><sup>1</sup> <a href="https://scholar.google.com/citations?user=-j1j7TkAAAAJ" target='_blank'>Lingdong Kong</a><sup>2,3</sup> <a href="https://scholar.google.com/citations?user=QDXADSEAAAAJ" target='_blank'>Wenwei Zhang</a><sup>2,4</sup> <a href="https://scholar.google.com/citations?user=YUKPVCoAAAAJ" target='_blank'>Jiawei Ren</a><sup>4</sup> <a href="https://scholar.google.com/citations?user=lSDISOcAAAAJ" target='_blank'>Liang Pan</a><sup>2</sup> <a href="https://scholar.google.com/citations?user=eGD0b7IAAAAJ" target='_blank'>Kai Chen</a><sup>2</sup> <a href="https://scholar.google.com/citations?user=lc45xlcAAAAJ" target='_blank'>Ziwei Liu</a><sup>4</sup> <br> <small><sup>1</sup>University of California, Irvine </small> <small><sup>2</sup>Shanghai AI Laboratory </small> <small><sup>3</sup>National University of Singapore </small> <small><sup>4</sup>S-Lab, Nanyang Technological University</small> </p> </p> <p align="center"> <a href="https://arxiv.org/abs/2405.17426" target='_blank'> <img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-blue"> </a> <a href="https://daniel-xsy.github.io/robobev/" target='_blank'> <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-lightblue"> </a> <a href="https://daniel-xsy.github.io/robobev/" target='_blank'> <img src="https://img.shields.io/badge/Demo-%F0%9F%8E%AC-yellow"> </a> <a href="docs/CN.md" target='_blank'> <img src="https://img.shields.io/badge/%E4%B8%AD%E8%AF%91%E7%89%88-%F0%9F%90%BC-lightyellow"> </a> <a href="" target='_blank'> <img src="https://visitor-badge.laobi.icu/badge?page_id=Daniel-xsy.RoboBEV&left_color=gray&right_color=red"> </a> </p>About
RoboBEV
is the first robustness evaluation benchmark tailored for camera-based bird's eye view (BEV) perception under natural data corruption and domain shift, which are cases that have a high likelihood to occur in real-world deployments.
[Common Corruption] - We investigate eight data corruption types that are likely to appear in driving scenarios, ranging from <sup>1</sup>sensor failure
, <sup>2</sup>motion & data processing
, <sup>3</sup>lighting conditions
, and <sup>4</sup>weather conditions
.
[Domain Shift] - We benchmark the adaptation performance of BEV models from three aspects, including <sup>1</sup>city-to-city
, <sup>2</sup>day-to-night
, and <sup>3</sup>dry-to-rain
.
FRONT_LEFT | FRONT | FRONT_RIGHT | FRONT_LEFT | FRONT | FRONT_RIGHT |
<img src="docs/figs/front_left_snow.gif" width="120" height="67"> | <img src="docs/figs/front_snow.gif" width="120" height="67"> | <img src="docs/figs/front_right_snow.gif" width="120" height="67"> | <img src="docs/figs/front_left_dark.gif" width="120" height="67"> | <img src="docs/figs/front_dark.gif" width="120" height="67"> | <img src="docs/figs/front_right_dark.gif" width="120" height="67"> |
<img src="docs/figs/back_left_snow.gif" width="120" height="67"> | <img src="docs/figs/back_snow.gif" width="120" height="67"> | <img src="docs/figs/back_right_snow.gif" width="120" height="67"> | <img src="docs/figs/back_left_dark.gif" width="120" height="67"> | <img src="docs/figs/back_dark.gif" width="120" height="67"> | <img src="docs/figs/back_right_dark.gif" width="120" height="67"> |
BACK_LEFT | BACK | BACK_RIGHT | BACK_LEFT | BACK | BACK_RIGHT |
Visit our project page to explore more examples. :blue_car:
Updates
- [2024.06] - Check out our updated paper for robust BEV perception: Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving. :fuelpump:
- [2024.05] - Check out the technical report of this competition: The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition. :blue_car:
- [2024.05] - The slides of the 2024 RoboDrive Workshop are available here :arrow_heading_up:.
- [2024.05] - The video recordings are available on YouTube :arrow_heading_up: and Bilibili :arrow_heading_up:.
- [2024.05] - We are glad to announce the winning teams of the 2024 RoboDrive Challenge:
- Track 1: Robust BEV Detection
- :1st_place_medal:
DeepVision
, :2nd_place_medal:Ponyville Autonauts Ltd
, :3rd_place_medal:CyberBEV
- :1st_place_medal:
- Track 2: Robust Map Segmentation
- :1st_place_medal:
SafeDrive-SSR
, :2nd_place_medal:CrazyFriday
, :3rd_place_medal:Samsung Research
- :1st_place_medal:
- Track 3: Robust Occupancy Prediction
- :1st_place_medal:
ViewFormer
, :2nd_place_medal:APEC Blue
, :3rd_place_medal:hm.unilab
- :1st_place_medal:
- Track 4: Robust Depth Estimation
- :1st_place_medal:
HIT-AIIA
, :2nd_place_medal:BUAA-Trans
, :3rd_place_medal:CUSTZS
- :1st_place_medal:
- Track 5: Robust Multi-Modal BEV Detection
- :1st_place_medal:
safedrive-promax
, :2nd_place_medal:Ponyville Autonauts Ltd
, :3rd_place_medal:HITSZrobodrive
- :1st_place_medal:
- Track 1: Robust BEV Detection
- [2024.01] - The toolkit tailored for the 2024 RoboDrive Challenge has been released. :hammer_and_wrench:
- [2023.12] - We are hosting the RoboDrive Challenge at ICRA 2024. :blue_car:
- [2023.06] - The nuScenes-C dataset is now available at OpenDataLab! đ
- [2023.04] - We establish "Robust BEV Perception" leaderboards on Paper-with-Code. Join the challenge today! :raising_hand:
- [2023.02] - We invite every BEV enthusiast to participate in the robust BEV perception benchmark! For more details, please read this page. :beers:
- [2023.01] - Launch of
RoboBEV
! In this initial version, 11 BEV detection algorithms and 1 monocular 3D detection algorithm have been benchmarked under 8 corruption types across 3 severity levels.
Outline
- Installation
- Data Preparation
- Getting Started
- Model Zoo
- Robustness Benchmark
- BEV Model Calibration
- Create Corruption Set
- TODO List
- Citation
- License
- Acknowledgements
Installation
Kindly refer to INSTALL.md for the installation details.
Data Preparation
Our datasets are hosted by OpenDataLab.
<img src="https://raw.githubusercontent.com/opendatalab/dsdl-sdk/2ae5264a7ce1ae6116720478f8fa9e59556bed41/resources/opendatalab.svg" width="32%"/><br> OpenDataLab is a pioneering open data platform for the large AI model era, making datasets accessible. By using OpenDataLab, researchers can obtain free formatted datasets in various fields.
Kindly refer to DATA_PREPARE.md for the details to prepare the nuScenes
and nuScenes-C
datasets.
Getting Started
Kindly refer to GET_STARTED.md to learn more usage about this codebase.
Model Zoo
<details open> <summary> <b>Camera-Only BEV Detection</b></summary></details> <details open> <summary> <b>Camera-Only Monocular 3D Detection</b></summary>
- Fast-BEV, arXiv 2023. <sup>
[Code]
</sup>- AeDet, CVPR 2023. <sup>
[Code]
</sup>- SOLOFusion, ICLR 2023. <sup>
[Code]
</sup>- PolarFormer, AAAI 2023. <sup>
[Code]
</sup>- BEVStereo, AAAI 2023. <sup>
[Code]
</sup>- BEVDepth, AAAI 2023. <sup>
[Code]
</sup>- MatrixVT, arXiv 2022. <sup>
[Code]
</sup>- Sparse4D, arXiv 2022. <sup>
[Code]
</sup>- CrossDTR, arXiv 2022. <sup>
[Code]
</sup>- SRCN3D, arXiv 2022. <sup>
[Code]
</sup>- PolarDETR, arXiv 2022. <sup>
[Code]
</sup>- BEVerse, arXiv 2022. <sup>
[Code]
</sup>- M^2BEV, arXiv 2022. <sup>
[Code]
</sup>- ORA3D, BMVC 2022. <sup>
[Code]
</sup>- Graph-DETR3D, ACM MM 2022. <sup>
[Code]
</sup>- SpatialDETR, ECCV 2022. <sup>
[Code]
</sup>- PETR, ECCV 2022. <sup>
[Code]
</sup>- BEVFormer, ECCV 2022. <sup>
[Code]
</sup>- BEVDet, arXiv 2021. <sup>
[Code]
</sup>- DETR3D, CoRL 2021. <sup>
[Code]
</sup>
</details> <details open> <summary> <b>LiDAR-Camera Fusion BEV Detection</b></summary>
</details> <details open> <summary> <b>Camera-Only BEV Map Segmentation</b></summary>
- BEVDistill, ICLR 2023. <sup>
[Code]
</sup>- BEVFusion, ICRA 2023. <sup>
[Code]
</sup>- BEVFusion, NeurIPS 2022. <sup>
[Code]
</sup>- TransFusion, CVPR 2022. <sup>
[Code]
</sup>- AutoAlignV2, ECCV 2022. <sup>
[Code]
</sup>
</details> <details open> <summary> <b>Multi-Camera Depth Estimation</b></summary>
</details> <details open> <summary> <b>Multi-Camera Semantic Occupancy Prediction</b></summary>
- SurroundDepth, CoRL 2022. <sup>
[Code]
</sup>
</details>
- SurroundOcc, arXiv 2023. <sup>
[Code]
</sup>- TPVFormer, CVPR, 2023. <sup>
[Code]
</sup>
Robustness Benchmark
:triangular_ruler: Metrics: The nuScenes Detection Score (NDS) is consistently used as the main indicator for evaluating model performance in our benchmark. The following two metrics are adopted to compare between models' robustness:
- mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline model, which is calculated among all corruption types across three severity levels.
- mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across three severity levels.
:gear: Notation: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation. For more detailed experimental results, please refer to RESULTS.md.
BEV Detection
Model | mCE (%) $\downarrow$ | mRR (%) $\uparrow$ | Clean | Cam Crash | Frame Lost | Color Quant | Motion Blur | Bright | Low Light | Fog | Snow |
---|---|---|---|---|---|---|---|---|---|---|---|
DETR3D<sup>:star:</sup> | 100.00 | 70.77 | 0.4224 | 0.2859 | 0.2604 | 0.3177 | 0.2661 | 0.4002 | 0.2786 | 0.3912 | 0.1913 |
DETR3D<sub>CBGS</sub> | 99.21 | 70.02 | 0.4341 | 0.2991 | 0.2685 | 0.3235 | 0.2542 | 0.4154 | 0.2766 | 0.4020 | 0.1925 |
BEVFormer<sub>Small</sub> | 101.23 | 59.07 | 0.4787 | 0.2771 | 0.2459 | 0.3275 | 0.2570 | 0.3741 | 0.2413 | 0.3583 | 0.1809 |
BEVFormer<sub>Base</sub> | 97.97 | 60.40 | 0.5174 | 0.3154 | 0.3017 | 0.3509 | 0.2695 | 0.4184 | 0.2515 | 0.4069 | 0.1857 |
PETR<sub>R50-p4</sub> | 111.01 | 61.26 | 0.3665 | 0.2320 | 0.2166 | 0.2472 | 0.2299 | 0.2841 | 0.1571 | 0.2876 | 0.1417 |
PETR<sub>VoV-p4</sub> | 100.69 | 65.03 | 0.4550 | 0.2924 | 0.2792 | 0.2968 | 0.2490 | 0.3858 | 0.2305 | 0.3703 | 0.2632 |
ORA3D | 99.17 | 68.63 | 0.4436 | 0.3055 | 0.2750 | 0.3360 | 0.2647 | 0.4075 | 0.2613 | 0.3959 | 0.1898 |
BEVDet<sub>R50</sub> | 115.12 | 51.83 | 0.3770 | 0.2486 | 0.1924 | 0.2408 | 0.2061 | 0.2565 | 0.1102 | 0.2461 | 0.0625 |
BEVDet<sub>R101</sub> | 113.68 | 53.12 | 0.3877 | 0.2622 | 0.2065 | 0.2546 | 0.2265 | 0.2554 | 0.1118 | 0.2495 | 0.0810 |
BEVDet<sub>R101-pt</sub> | 112.80 | 56.35 | 0.3780 | 0.2442 | 0.1962 | 0.3041 | 0.2590 | 0.2599 | 0.1398 | 0.2073 | 0.0939 |
BEVDet<sub>SwinT</sub> | 116.48 | 46.26 | 0.4037 | 0.2609 | 0.2115 | 0.2278 | 0.2128 | 0.2191 | 0.0490 | 0.2450 | 0.0680 |
BEVDepth<sub>R50</sub> | 110.02 | 56.82 | 0.4058 | 0.2638 | 0.2141 | 0.2751 | 0.2513 | 0.2879 | 0.1757 | 0.2903 | 0.0863 |
BEVerse<sub>SwinT</sub> | 110.67 | 48.60 | 0.4665 | 0.3181 | 0.3037 | 0.2600 | 0.2647 | 0.2656 | 0.0593 | 0.2781 | 0.0644 |
BEVerse<sub>SwinS</sub> | 117.82 | 49.57 | 0.4951 | 0.3364 | 0.2485 | 0.2807 | 0.2632 | 0.3394 | 0.1118 | 0.2849 | 0.0985 |
PolarFormer<sub>R101</sub> | 96.06 | 70.88 | 0.4602 | 0.3133 | 0.2808 | 0.3509 | 0.3221 | 0.4304 | 0.2554 | 0.4262 | 0.2304 |
PolarFormer<sub>VoV</sub> | 98.75 | 67.51 | 0.4558 | 0.3135 | 0.2811 | 0.3076 | 0.2344 | 0.4280 | 0.2441 | 0.4061 | 0.2468 |
SRCN3D<sub>R101</sub> | 99.67 | 70.23 | 0.4286 | 0.2947 | 0.2681 | 0.3318 | 0.2609 | 0.4074 | 0.2590 | 0.3940 | 0.1920 |
SRCN3D<sub>VoV</sub> | 102.04 | 67.95 | 0.4205 | 0.2875 | 0.2579 | 0.2827 | 0.2143 | 0.3886 | 0.2274 | 0.3774 | 0.2499 |
Sparse4D<sub>R101</sub> | 100.01 | 55.04 | 0.5438 | 0.2873 | 0.2611 | 0.3310 | 0.2514 | 0.3984 | 0.2510 | 0.3884 | 0.2259 |
SOLOFusion<sub>short</sub> | 108.68 | 61.45 | 0.3907 | 0.2541 | 0.2195 | 0.2804 | 0.2603 | 0.2966 | 0.2033 | 0.2998 | 0.1066 |
SOLOFusion<sub>long</sub> | 97.99 | 64.42 | 0.4850 | 0.3159 | 0.2490 | 0.3598 | 0.3460 | 0.4002 | 0.2814 | 0.3991 | 0.1480 |
SOLOFusion<sub>fusion</sub> | 92.86 | 64.53 | 0.5381 | 0.3806 | 0.3464 | 0.4058 | 0.3642 | 0.4329 | 0.2626 | 0.4480 | 0.1376 |
FCOS3D<sub>finetune</sub> | 107.82 | 62.09 | 0.3949 | 0.2849 | 0.2479 | 0.2574 | 0.2570 | 0.3218 | 0.1468 | 0.3321 | 0.1136 |
BEVFusion<sub>Cam</sub> | 109.02 | 57.81 | 0.4121 | 0.2777 | 0.2255 | 0.2763 | 0.2788 | 0.2902 | 0.1076 | 0.3041 | 0.1461 |
BEVFusion<sub>LiDAR</sub> | - | - | 0.6928 | - | - | - | - | - | - | - | - |
BEVFusion<sub>C+L</sub> | 43.80 | 97.41 | 0.7138 | 0.6963 | 0.6931 | 0.7044 | 0.6977 | 0.7018 | 0.6787 | - | - |
TransFusion | - | - | 0.6887 | 0.6843 | 0.6447 | 0.6819 | 0.6749 | 0.6843 | 0.6663 | - | - |
AutoAlignV2 | - | - | 0.6139 | 0.5849 | 0.5832 | 0.6006 | 0.5901 | 0.6076 | 0.5770 | - | - |
Multi-Camera Depth Estimation
Model | Metric | Clean | Cam Crash | Frame Lost | Color Quant | Motion Blur | Bright | Low Light | Fog | Snow |
---|---|---|---|---|---|---|---|---|---|---|
SurroundDepth | Abs Rel | 0.280 | 0.485 | 0.497 | 0.334 | 0.338 | 0.339 | 0.354 | 0.320 | 0.423 |
Multi-Camera Semantic Occupancy Prediction
Model | Metric | Clean | Cam Crash | Frame Lost | Color Quant | Motion Blur | Bright | Low Light | Fog | Snow |
---|---|---|---|---|---|---|---|---|---|---|
TPVFormer | mIoU vox | 52.06 | 27.39 | 22.85 | 38.16 | 38.64 | 49.00 | 37.38 | 46.69 | 19.39 |
SurroundOcc | SC mIoU | 20.30 | 11.60 | 10.00 | 14.03 | 12.41 | 19.18 | 12.15 | 18.42 | 7.39 |
BEV Model Calibration
Model | Pretrain | Temporal | Depth | CBGS | Backbone | Encoder<sub>BEV</sub> | Input Size | mCE (%) | mRR (%) | NDS |
---|---|---|---|---|---|---|---|---|---|---|
DETR3D | â | â | â | â | ResNet | Attention | 1600Ã900 | 100.00 | 70.77 | 0.4224 |
DETR3D<sub>CBGS</sub> | â | â | â | â | ResNet | Attention | 1600Ã900 | 99.21 | 70.02 | 0.4341 |
BEVFormer<sub>Small</sub> | â | â | â | â | ResNet | Attention | 1280Ã720 | 101.23 | 59.07 | 0.4787 |
BEVFormer<sub>Base</sub> | â | â | â | â | ResNet | Attention | 1600Ã900 | 97.97 | 60.40 | 0.5174 |
PETR<sub>R50-p4</sub> | â | â | â | â | ResNet | Attention | 1408Ã512 | 111.01 | 61.26 | 0.3665 |
PETR<sub>VoV-p4</sub> | â | â | â | â | VoVNet<sub>V2</sub> | Attention | 1600Ã900 | 100.69 | 65.03 | 0.4550 |
ORA3D | â | â | â | â | ResNet | Attention | 1600Ã900 | 99.17 | 68.63 | 0.4436 |
PolarFormer<sub>R101</sub> | â | â | â | â | ResNet | Attention | 1600Ã900 | 96.06 | 70.88 | 0.4602 |
PolarFormer<sub>VoV</sub> | â | â | â | â | VoVNet<sub>V2</sub> | Attention | 1600Ã900 | 98.75 | 67.51 | 0.4558 |
SRCN3D<sub>R101</sub> | â | â | â | â | ResNet | CNN+Attn. | 1600Ã900 | 99.67 | 70.23 | 0.4286 |
SRCN3D<sub>VoV</sub> | â | â | â | â | VoVNet<sub>V2</sub> | CNN+Attn. | 1600Ã900 | 102.04 | 67.95 | 0.4205 |
Sparse4D<sub>R101</sub> | â | â | â | â | ResNet | CNN+Attn. | 1600Ã900 | 100.01 | 55.04 | 0.5438 |
BEVDet<sub>R50</sub> | â | â | â | â | ResNet | CNN | 704Ã256 | 115.12 | 51.83 | 0.3770 |
BEVDet<sub>R101</sub> | â | â | â | â | ResNet | CNN | 704Ã256 | 113.68 | 53.12 | 0.3877 |
BEVDet<sub>R101-pt</sub> | â | â | â | â | ResNet | CNN | 704Ã256 | 112.80 | 56.35 | 0.3780 |
BEVDet<sub>SwinT</sub> | â | â | â | â | Swin | CNN | 704Ã256 | 116.48 | 46.26 | 0.4037 |
BEVDepth<sub>R50</sub> | â | â | â | â | ResNet | CNN | 704Ã256 | 110.02 | 56.82 | 0.4058 |
BEVerse<sub>SwinT</sub> | â | â | â | â | Swin | CNN | 704Ã256 | 137.25 | 28.24 | 0.1603 |
BEVerse<sub>SwinT</sub> | â | â | â | â | Swin | CNN | 704Ã256 | 110.67 | 48.60 | 0.4665 |
BEVerse<sub>SwinS</sub> | â | â | â | â | Swin | CNN | 1408Ã512 | 132.13 | 29.54 | 0.2682 |
BEVerse<sub>SwinS</sub> | â | â | â | â | Swin | CNN | 1408Ã512 | 117.82 | 49.57 | 0.4951 |
SOLOFusion<sub>short</sub> | â | â | â | â | ResNet | CNN | 704Ã256 | 108.68 | 61.45 | 0.3907 |
SOLOFusion<sub>long</sub> | â | â | â | â | ResNet | CNN | 704Ã256 | 97.99 | 64.42 | 0.4850 |
SOLOFusion<sub>fusion</sub> | â | â | â | â | ResNet | CNN | 704Ã256 | 92.86 | 64.53 | 0.5381 |
Note: Pretrain denotes models initialized from the FCOS3D checkpoint. Temporal indicates whether temporal information is used. Depth denotes models with an explicit depth estimation branch. CBGS highlight models use the class-balanced group-sampling strategy.
Create Corruption Set
You can manage to create your own "RoboBEV" corrpution sets! Follow the instructions listed in CREATE.md.
TODO List
- Initial release. đ
- Add scripts for creating common corruptions.
- Add download link of nuScenes-C.
- Add evaluation scripts on corruption sets.
- Establish benchmark for BEV map segmentation.
- Establish benchmark for multi-camera depth estimation.
- Establish benchmark for multi-camera semantic occupancy prediction.
- ...
Citation
If you find this work helpful, please kindly consider citing the following:
@article{xie2024benchmarking,
title = {Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving},
author = {Xie, Shaoyuan and Kong, Lingdong and Zhang, Wenwei and Ren, Jiawei and Pan, Liang and Chen, Kai and Liu, Ziwei},
journal = {arXiv preprint arXiv:2405.17426},
year = {2024}
}
@article{xie2023robobev,
title = {RoboBEV: Towards Robust Bird's Eye View Perception under Corruptions},
author = {Xie, Shaoyuan and Kong, Lingdong and Zhang, Wenwei and Ren, Jiawei and Pan, Liang and Chen, Kai and Liu, Ziwei},
journal = {arXiv preprint arXiv:2304.06719},
year = {2023}
}
@misc{xie2023robobev_codebase,
title = {The RoboBEV Benchmark for Robust Bird's Eye View Detection under Common Corruption and Domain Shift},
author = {Xie, Shaoyuan and Kong, Lingdong and Zhang, Wenwei and Ren, Jiawei and Pan, Liang and Chen, Kai and Liu, Ziwei},
howpublished = {\url{https://github.com/Daniel-xsy/RoboBEV}},
year = {2023}
}
License
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a> <br /> This work is under the <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>, while some specific operations in this codebase might be with other licenses. Please refer to LICENSE.md for a more careful check, if you are using our code for commercial matters.
Acknowledgements
This work is developed based on the MMDetection3D codebase.
<img src="https://github.com/open-mmlab/mmdetection3d/blob/main/resources/mmdet3d-logo.png" width="30%"/><br> MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.
:heart: We thank Jiangmiao Pang and Tai Wang for their insightful discussions and feedback. We thank the OpenDataLab platform for hosting our datasets.