Awesome
<div align="center">
<h1> AutoAlignV2 </h1>
<h3>Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection</h3>
<br>Zehui Chen, Zhenyu Li, Shiquan Zhang, Liangji Fang, Qinhong Jiang, Feng Zhao.
<br>
<div><a href="https://arxiv.org/abs/2207.10316">[ECCV 2022 Paper] </a></div>
<center>
<img src='figs/framework.png'>
</center>
</div>
Performance
nuScenes Val set
Model | config | mAP | NDS |
---|
Baseline 1/8 subset | | - | - |
AutoAlignV2 1/8 subset | | 58.5 | 63.2 |
nuScenes Test Leaderboard
Model | mAP | NDS |
---|
AutoAlign | 65.8 | 70.9 |
AutoAlignV2 | 68.4 | 72.4 |
Note
The code is released without rechecking. We will clean up and recheck the code recently.
Get Started
Install Deformable Ops from DeformDETR
cd ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py
Prepare Dataset
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes --version v1.0
Train Model
./tools/dist_train.sh aav2_cfg/centerpoint_voxel_nus_8subset_bs4_img1_nuimg_detach_deform_multipts.py 8
Test Model
./tools/dist_test.sh aav2_cfg/centerpoint_voxel_nus_8subset_bs4_img1_nuimg_detach_deform_multipts.py work_dirs/centerpoint_voxel_nus_8subset_bs4_img1_nuimg_detach_deform_multipts/epoch_20.pth 8 --eval bbox
Pretrained Model Weights
Citation
If you find our work useful for your research, please consider citing the paper
@article{chen2022autoalignv2,
title={AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection},
author={Chen, Zehui and Li, Zhenyu and Zhang, Shiquan and Fang, Liangji and Jiang, Qinhong and Zhao, Feng},
journal={ECCV},
year={2022}
}