Home

Awesome

Machine Learning & Deep Learning Tutorials Awesome

Contents

<a name="general" />

Introduction

<a name="interview" />

Interview Resources

<a name="ai" />

Artificial Intelligence

<a name="ga" />

Genetic Algorithms

<a name="stat" />

Statistics

<a name="blogs" />

Useful Blogs

<a name="quora" />

Resources on Quora

<a name="kaggle" />

Kaggle Competitions WriteUp

<a name="cs" />

Cheat Sheets

<a name="classification" />

Classification

<a name="linear" />

Linear Regression

<a name="logistic" />

Logistic Regression

<a name="validation" />

Model Validation using Resampling

<a name="cross" /> <a name="boot" /> <a name="deep" />

Deep Learning

<a name="frame" /> <a name="feed" /> <a name="rnn" /> <a name="rnn2" /> <a name="rbm" /> <a name="auto" /> <a name="cnn" /> <a name="nrl" /> <a name="nlp" />

Natural Language Processing

<a name="topic" /> <a name="word2vec" /> <a name="vision" />

Computer Vision

<a name="svm" />

Support Vector Machine

<a name="rl" />

Reinforcement Learning

<a name="dt" />

Decision Trees

<a name="rf" />

Random Forest / Bagging

<a name="gbm" />

Boosting

<a name="ensem" />

Ensembles

<a name="stack" />

Stacking Models

<a name="vc" />

Vapnik–Chervonenkis Dimension

<a name="bayes" />

Bayesian Machine Learning

<a name="semi" />

Semi Supervised Learning

<a name="opt" />

Optimization

<a name="other" />

Other Tutorials