Awesome
COVID-19 Coronavirus Map / 新型冠状病毒肺炎疫情图
<img src="https://raw.githubusercontent.com/stevenliuyi/covid19/master/public/cover.png" width="400" />COVID-19 (2019-nCOV / SARS-CoV-2) Coronavirus Map (https://covid19.health) is an interactive, animated map for the COVID-19 coronavirus outbreak.
The map is based on multiple sources (see below for details). If you are interested, the integrated dataset can be found here. Note that numbers in different data sources may not match with each other exactly.
The dataset is also incorporated in the STC COVID-19 Dataset, curated by the NSF Spatiotemporal Innovation Center. To use the dataset for publications, please cite the following article:
Sha, D., Liu, Y., Liu, Q., Li, Y., Tian, Y., Beaini, F., Zhong, C., Hu, T., Wang, Z., Lan, H., Zhou, Y., Zhang, Z. and Yang, C., 2020. A spatiotemporal data collection of viral cases for COVID-19 rapid response. Big Earth Data. DOI: 10.1080/20964471.2020.1844934
@article{sha2020,
title={A spatiotemporal data collection of viral cases for COVID-19 rapid response},
author={Dexuan Sha and Yi Liu and Qian Liu and Yun Li and Yifei Tian and Fayez Beaini and Cheng Zhong and Tao Hu and Zifu Wang and Hai Lan and You Zhou and Zhiran Zhang and Chaowei Yang},
journal={Big Earth Data},
year={2020},
publisher={Taylor \& Francis},
doi={10.1080/20964471.2020.1844934}
}
Pull requests are welcome. If you'd like to support the work and buy me a ☕, I greatly appreciate it!
<a href="https://www.buymeacoffee.com/stevenliuyi" target="_blank"><img src="https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png" alt="Buy Me A Coffee" style="height: 41px !important;width: 174px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
Data Sources
- Worldwide/United States/Australia/Canada: 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE
- China/Worldwide: COVID-19/2019-nCoV Time Series Infection Data Warehouse (data crawled from Ding Xiang Yuan)
- United States (county level): 1Point3Acres COVID-19 in US and Canada
- Italy: Dati COVID-19 Italia
- South Korea: coronaboard.kr
- France: cedricguadalupe/FRANCE-COVID-19
- Germany/Austria/Netherlands/Sweden/Poland/Norway/Czechia: covid19-eu-zh/covid19-eu-data
- Japan: stopcovid19.jp
- Spain: datadista/datasets
- Switzerland: daenuprobst/covid19-cases-switzerland
- United Kingdom: tomwhite/covid-19-uk-data
- Iran/Hungary: Wikipedia
- Chile: YachayData/COVID-19
- Portugal: Dados relativos à pandemia COVID-19 em Portugal
- Brazil: COVID-19 Brazil - time series data
- Malaysia: ynshung/covid-19-malaysia
- Belgium: eschnou/covid19-be
- Russia: PhtRaveller/covid19-ru
- Ecuador/Mexico/Argentina/Peru/Colombia/Honduras: Latin America Covid-19 Data Repository by DSRP
- India: amodm/api-covid19-in
- Ireland: data.gov.ie
- South Africa: Coronavirus COVID-19 (2019-nCoV) Data Repository for South Africa
- Philippines: gigerbytes/ncov-ph-data
- Romania: gabrielpreda/covid_19_ro
- Indonesia: Monitoring COVID19 Indonesia by catchmeup.id
- Saudi Arabia: Saudi Arabia Coronavirus disease (COVID-19) situation
- Thailand: TH-STAT.com
- Pakistan: covid.gov.pk
- Croatia: koronavirus.hr
- Finland: Varmistetut koronatapaukset Suomessa (COVID-19)
- Ukraine: dmytro-derkach/covid-19-ukraine
- Denmark: Arkiv med overvågningsdata for COVID-19
- Slovakia: davidrychly/covid-sk-3
- Albania: lucil/covid19-albanian-data
- Latvia: data.gov.lv
- Greece: iMEdD-Lab/open-data
- Estonia: koroonakaart.ee
- Slovenia: nijz.si
- Haiti: coronahaiti.org
- Algeria: corona-dz.live
- Nigera: Nigeria Novel Coronavirus (COVID-19) Public Dataset
- Senegal: senegalouvert/COVID-19
- Ghana: ghanahealthservice.org
- Morocco: rue20.com
- Bangdalesh: iedcr.gov.bd
- Venezuela: API COVID-19 Venezuela
- Bolivia: mauforonda/covid19-bolivia
- Turkey: covid19.saglik.gov.tr
- Sri Lanka: epid.gov.lk
- Nepal: covid19.ndrrma.gov.np
- Guatemala: Situación de COVID-19 en Guatemala
Maps
Original map shapefiles are from GADM, which are converted to TopoJSON files using mapshaper.