Awesome
<p align="right">English | <a href="./README_CN.md">简体中文</a></p> <p align="center"> <img src="docs/figs/logo.png" align="center" width="22.5%"> <h3 align="center"><strong>Robo3D: Towards Robust and Reliable 3D Perception against Corruptions</strong></h3> <p align="center"> <a href="https://scholar.google.com/citations?user=-j1j7TkAAAAJ" target='_blank'>Lingdong Kong</a><sup>1,2,*</sup> <a href="https://github.com/youquanl" target='_blank'>Youquan Liu</a><sup>1,3,*</sup> <a href="https://scholar.google.com/citations?user=7atts2cAAAAJ" target='_blank'>Xin Li</a><sup>1,4,*</sup> <a href="https://scholar.google.com/citations?user=Uq2DuzkAAAAJ" target='_blank'>Runnan Chen</a><sup>1,5</sup> <a href="https://scholar.google.com/citations?user=QDXADSEAAAAJ" target='_blank'>Wenwei Zhang</a><sup>1,6</sup> <br> <a href="https://scholar.google.com/citations?user=YUKPVCoAAAAJ" target='_blank'>Jiawei Ren</a><sup>6</sup> <a href="https://scholar.google.com/citations?user=lSDISOcAAAAJ" target='_blank'>Liang Pan</a><sup>6</sup> <a href="https://scholar.google.com/citations?user=eGD0b7IAAAAJ" target='_blank'>Kai Chen</a><sup>1</sup> <a href="https://scholar.google.com/citations?user=lc45xlcAAAAJ" target='_blank'>Ziwei Liu</a><sup>6</sup> <br> <sup>1</sup>Shanghai AI Laboratory <sup>2</sup>National University of Singapore <sup>3</sup>Hochschule Bremerhaven <sup>4</sup>East China Normal University <sup>5</sup>The University of Hong Kong <sup>6</sup>S-Lab, Nanyang Technological University </p> </p> <p align="center"> <a href="https://arxiv.org/abs/2303.17597" target='_blank'> <img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-slategray"> </a> <a href="https://ldkong.com/Robo3D" target='_blank'> <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-lightblue"> </a> <a href="" target='_blank'> <img src="https://img.shields.io/badge/Demo-%F0%9F%8E%AC-pink"> </a> <a href="https://zhuanlan.zhihu.com/p/672935761" target='_blank'> <img src="https://img.shields.io/badge/%E4%B8%AD%E8%AF%91%E7%89%88-%F0%9F%90%BC-red"> </a> <a href="" target='_blank'> <img src="https://visitor-badge.laobi.icu/badge?page_id=ldkong1205.Robo3D&left_color=gray&right_color=firebrick"> </a> </p>About
Robo3D
is an evaluation suite heading toward robust and reliable 3D perception in autonomous driving. With it, we probe the robustness of 3D detectors and segmentors under out-of-distribution (OoD) scenarios against corruptions that occur in the real-world environment. Specifically, we consider natural corruptions happen in the following cases:
- Adverse weather conditions, such as
fog
,wet ground
, andsnow
; - External disturbances that are caused by
motion blur
or result in LiDARbeam missing
; - Internal sensor failure, including
crosstalk
, possibleincomplete echo
, andcross-sensor
scenarios.
<img src="docs/figs/teaser/clean.png" width="240"> | <img src="docs/figs/teaser/fog.png" width="240"> | <img src="docs/figs/teaser/wet_ground.png" width="240"> |
Clean | Fog | Wet Ground |
<img src="docs/figs/teaser/snow.png" width="240"> | <img src="docs/figs/teaser/motion_blur.png" width="240"> | <img src="docs/figs/teaser/beam_missing.png" width="240"> |
Snow | Motion Blur | Beam Missing |
<img src="docs/figs/teaser/crosstalk.png" width="240"> | <img src="docs/figs/teaser/incomplete_echo.png" width="240"> | <img src="docs/figs/teaser/cross_sensor.png" width="240"> |
Crosstalk | Incomplete Echo | Cross-Sensor |
Visit our project page to explore more examples. :oncoming_automobile:
Updates
- [2024.05] - Check out the technical report of this competition: The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition :blue_car:.
- [2024.05] - The slides of the 2024 RoboDrive Workshop are available here :arrow_heading_up:.
- [2024.05] - The video recordings are available on YouTube :arrow_heading_up: and Bilibili :arrow_heading_up:.
- [2024.05] - We are glad to announce the winning teams of the 2024 RoboDrive Challenge:
- Track 1: Robust BEV Detection
- :1st_place_medal:
DeepVision
, :2nd_place_medal:Ponyville Autonauts Ltd
, :3rd_place_medal:CyberBEV
- :1st_place_medal:
- Track 2: Robust Map Segmentation
- :1st_place_medal:
SafeDrive-SSR
, :2nd_place_medal:CrazyFriday
, :3rd_place_medal:Samsung Research
- :1st_place_medal:
- Track 3: Robust Occupancy Prediction
- :1st_place_medal:
ViewFormer
, :2nd_place_medal:APEC Blue
, :3rd_place_medal:hm.unilab
- :1st_place_medal:
- Track 4: Robust Depth Estimation
- :1st_place_medal:
HIT-AIIA
, :2nd_place_medal:BUAA-Trans
, :3rd_place_medal:CUSTZS
- :1st_place_medal:
- Track 5: Robust Multi-Modal BEV Detection
- :1st_place_medal:
safedrive-promax
, :2nd_place_medal:Ponyville Autonauts Ltd
, :3rd_place_medal:HITSZrobodrive
- :1st_place_medal:
- Track 1: Robust BEV Detection
- [2024.01] - The toolkit tailored for the 2024 RoboDrive Challenge has been released. :hammer_and_wrench:
- [2023.12] - We are hosting the RoboDrive Challenge at ICRA 2024. :blue_car:
- [2023.09] - Intend to improve the OoD robustness of your 3D perception models? Check out our recent work, Seal :seal:, an image-to-LiDAR self-supervised pretraining framework that leverages off-the-shelf knowledge from vision foundation models for cross-modality representation learning.
- [2023.07] - Robo3D was accepted to ICCV 2023! :tada:
- [2023.03] - We establish "Robust 3D Perception" leaderboards on Paper-with-Code: <sup>1</sup>
KITTI-C
, <sup>2</sup>SemanticKITTI-C
, <sup>3</sup>nuScenes-C
, and <sup>4</sup>WOD-C
. Join the challenge today! :raising_hand: - [2023.03] - The
KITTI-C
,SemanticKITTI-C
, andnuScenes-C
datasets are ready for download at the OpenDataLab platform. Kindly refer to this page for more details on preparing these datasets. :beers: - [2023.01] - Launch of the
Robo3D
benchmark. In this initial version, we include 12 detectors and 22 segmentors, evaluated on 4 large-scale autonomous driving datasets (KITTI, SemanticKITTI, nuScenes, and Waymo Open) with 8 corruption types across 3 severity levels.
Outline
- Taxonomy
- Video Demo
- Installation
- Data Preparation
- Getting Started
- Model Zoo
- Benchmark
- Create Corruption Set
- TODO List
- Citation
- License
- Acknowledgements
Taxonomy
<img src="docs/figs/demo/bev_fog.gif" width="180"> | <img src="docs/figs/demo/bev_wet_ground.gif" width="180"> | <img src="docs/figs/demo/bev_snow.gif" width="180"> | <img src="docs/figs/demo/bev_motion_blur.gif" width="180"> |
<img src="docs/figs/demo/rv_fog.gif" width="180"> | <img src="docs/figs/demo/rv_wet_ground.gif" width="180"> | <img src="docs/figs/demo/rv_snow.gif" width="180"> | <img src="docs/figs/demo/rv_motion_blur.gif" width="180"> |
Fog | Wet Ground | Snow | Motion Blur |
<img src="docs/figs/demo/bev_beam_missing.gif" width="180"> | <img src="docs/figs/demo/bev_crosstalk.gif" width="180"> | <img src="docs/figs/demo/bev_incomplete_echo.gif" width="180"> | <img src="docs/figs/demo/bev_cross_sensor.gif" width="180"> |
<img src="docs/figs/demo/rv_beam_missing.gif" width="180"> | <img src="docs/figs/demo/rv_crosstalk.gif" width="180"> | <img src="docs/figs/demo/rv_incomplete_echo.gif" width="180"> | <img src="docs/figs/demo/rv_cross_sensor.gif" width="180"> |
Beam Missing | Crosstalk | Incomplete Echo | Cross-Sensor |
Video Demo
Demo 1 | Demo 2 | Demo 3 |
---|---|---|
<img width="100%" src="docs/figs/demo1.png"> | <img width="100%" src="docs/figs/demo2.png"> | <img width="100%" src="docs/figs/demo3.png"> |
Link <sup>:arrow_heading_up:</sup> | Link <sup>:arrow_heading_up:</sup> | Link <sup>:arrow_heading_up:</sup> |
Installation
For details related to installation, kindly refer to INSTALL.md.
Data Preparation
Our datasets are hosted by OpenDataLab.
<img src="https://raw.githubusercontent.com/opendatalab/dsdl-sdk/2ae5264a7ce1ae6116720478f8fa9e59556bed41/resources/opendatalab.svg" width="32%"/><br> OpenDataLab is a pioneering open data platform for the large AI model era, making datasets accessible. By using OpenDataLab, researchers can obtain free formatted datasets in various fields.
Kindly refer to DATA_PREPARE.md for the details to prepare the <sup>1</sup>KITTI
, <sup>2</sup>KITTI-C
, <sup>3</sup>SemanticKITTI
, <sup>4</sup>SemanticKITTI-C
, <sup>5</sup>nuScenes
, <sup>6</sup>nuScenes-C
, <sup>7</sup>WOD
, and <sup>8</sup>WOD-C
datasets.
Getting Started
To learn more usage about this codebase, kindly refer to GET_STARTED.md.
Model Zoo
<details open> <summary> <b>LiDAR Semantic Segmentation</b></summary></details> <details open> <summary> <b>LiDAR Panoptic Segmentation</b></summary>
- SqueezeSeg, ICRA 2018. <sup>
[Code]
</sup>- SqueezeSegV2, ICRA 2019. <sup>
[Code]
</sup>- MinkowskiNet, CVPR 2019. <sup>
[Code]
</sup>- RangeNet++, IROS 2019. <sup>
[Code]
</sup>- KPConv, ICCV 2019. <sup>
[Code]
</sup>- SalsaNext, ISVC 2020. <sup>
[Code]
</sup>- RandLA-Net, CVPR 2020. <sup>
[Code]
</sup>- PolarNet, CVPR 2020. <sup>
[Code]
</sup>- 3D-MiniNet, IROS 2020. <sup>
[Code]
</sup>- SPVCNN, ECCV 2020. <sup>
[Code]
</sup>- Cylinder3D, CVPR 2021. <sup>
[Code]
</sup>- FIDNet, IROS 2021. <sup>
[Code]
</sup>- RPVNet, ICCV 2021.
- CENet, ICME 2022. <sup>
[Code]
</sup>- CPGNet, ICRA 2022. <sup>
[Code]
</sup>- 2DPASS, ECCV 2022. <sup>
[Code]
</sup>- GFNet, TMLR 2022. <sup>
[Code]
</sup>- PCB-RandNet, arXiv 2022. <sup>
[Code]
</sup>- PIDS, WACV 2023. <sup>
[Code]
</sup>- SphereFormer, CVPR 2023. <sup>
[Code]
</sup>- WaffleIron, ICCV 2023. <sup>
[Code]
</sup>- FRNet, arXiv 2023. <sup>
[Code]
</sup>
<details open> <summary> <b>3D Object Detection</b></summary>
- DS-Net, CVPR 2021. <sup>
[Code]
</sup>- Panoptic-PolarNet, CVPR 2021. <sup>
[Code]
</sup>
</details>
- SECOND, Sensors 2018. <sup>
[Code]
</sup>- PointPillars, CVPR 2019. <sup>
[Code]
</sup>- PointRCNN, CVPR 2019. <sup>
[Code]
</sup>- Part-A2, T-PAMI 2020.
- PV-RCNN, CVPR 2020. <sup>
[Code]
</sup>- 3DSSD, CVPR 2020. <sup>
[Code]
</sup>- SA-SSD, CVPR 2020. <sup>
[Code]
</sup>- CenterPoint, CVPR 2021. <sup>
[Code]
</sup>- PV-RCNN++, IJCV 2022. <sup>
[Code]
</sup>- SphereFormer, CVPR 2023. <sup>
[Code]
</sup>
Benchmark
LiDAR Semantic Segmentation
The mean Intersection-over-Union (mIoU) is consistently used as the main indicator for evaluating model performance in our LiDAR semantic segmentation benchmark. The following two metrics are adopted to compare among models' robustness:
- mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline model, which is calculated among all corruption types across three severity levels.
- mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across three severity levels.
:red_car: SemanticKITTI-C
<p align="center"> <img src="docs/figs/stat/metrics_semkittic.png" align="center" width="100%"> </p>Model | mCE (%) | mRR (%) | Clean | Fog | Wet Ground | Snow | Motion Blur | Beam Missing | Cross-Talk | Incomplete Echo | Cross-Sensor |
---|---|---|---|---|---|---|---|---|---|---|---|
SqueezeSeg | 164.87 | 66.81 | 31.61 | 18.85 | 27.30 | 22.70 | 17.93 | 25.01 | 21.65 | 27.66 | 7.85 |
SqueezeSegV2 | 152.45 | 65.29 | 41.28 | 25.64 | 35.02 | 27.75 | 22.75 | 32.19 | 26.68 | 33.80 | 11.78 |
RangeNet<sub>21</sub> | 136.33 | 73.42 | 47.15 | 31.04 | 40.88 | 37.43 | 31.16 | 38.16 | 37.98 | 41.54 | 18.76 |
RangeNet<sub>53</sub> | 130.66 | 73.59 | 50.29 | 36.33 | 43.07 | 40.02 | 30.10 | 40.80 | 46.08 | 42.67 | 16.98 |
SalsaNext | 116.14 | 80.51 | 55.80 | 34.89 | 48.44 | 45.55 | 47.93 | 49.63 | 40.21 | 48.03 | 44.72 |
FIDNet<sub>34</sub> | 113.81 | 76.99 | 58.80 | 43.66 | 51.63 | 49.68 | 40.38 | 49.32 | 49.46 | 48.17 | 29.85 |
CENet<sub>34</sub> | 103.41 | 81.29 | 62.55 | 42.70 | 57.34 | 53.64 | 52.71 | 55.78 | 45.37 | 53.40 | 45.84 |
FRNet | 96.80 | 80.04 | 67.55 | 47.61 | 62.15 | 57.08 | 56.80 | 62.54 | 40.94 | 58.11 | 47.30 |
KPConv | 99.54 | 82.90 | 62.17 | 54.46 | 57.70 | 54.15 | 25.70 | 57.35 | 53.38 | 55.64 | 53.91 |
PIDS<sub>NAS1.25x</sub> | 104.13 | 77.94 | 63.25 | 47.90 | 54.48 | 48.86 | 22.97 | 54.93 | 56.70 | 55.81 | 52.72 |
PIDS<sub>NAS2.0x</sub> | 101.20 | 78.42 | 64.55 | 51.19 | 55.97 | 51.11 | 22.49 | 56.95 | 57.41 | 55.55 | 54.27 |
WaffleIron | 109.54 | 72.18 | 66.04 | 45.52 | 58.55 | 49.30 | 33.02 | 59.28 | 22.48 | 58.55 | 54.62 |
PolarNet | 118.56 | 74.98 | 58.17 | 38.74 | 50.73 | 49.42 | 41.77 | 54.10 | 25.79 | 48.96 | 39.44 |
<sup>:star:</sup>MinkUNet<sub>18</sub> | 100.00 | 81.90 | 62.76 | 55.87 | 53.99 | 53.28 | 32.92 | 56.32 | 58.34 | 54.43 | 46.05 |
MinkUNet<sub>34</sub> | 100.61 | 80.22 | 63.78 | 53.54 | 54.27 | 50.17 | 33.80 | 57.35 | 58.38 | 54.88 | 46.95 |
Cylinder3D<sub>SPC</sub> | 103.25 | 80.08 | 63.42 | 37.10 | 57.45 | 46.94 | 52.45 | 57.64 | 55.98 | 52.51 | 46.22 |
Cylinder3D<sub>TSC</sub> | 103.13 | 83.90 | 61.00 | 37.11 | 53.40 | 45.39 | 58.64 | 56.81 | 53.59 | 54.88 | 49.62 |
SPVCNN<sub>18</sub> | 100.30 | 82.15 | 62.47 | 55.32 | 53.98 | 51.42 | 34.53 | 56.67 | 58.10 | 54.60 | 45.95 |
SPVCNN<sub>34</sub> | 99.16 | 82.01 | 63.22 | 56.53 | 53.68 | 52.35 | 34.39 | 56.76 | 59.00 | 54.97 | 47.07 |
RPVNet | 111.74 | 73.86 | 63.75 | 47.64 | 53.54 | 51.13 | 47.29 | 53.51 | 22.64 | 54.79 | 46.17 |
CPGNet | 107.34 | 81.05 | 61.50 | 37.79 | 57.39 | 51.26 | 59.05 | 60.29 | 18.50 | 56.72 | 57.79 |
2DPASS | 106.14 | 77.50 | 64.61 | 40.46 | 60.68 | 48.53 | 57.80 | 58.78 | 28.46 | 55.84 | 50.01 |
GFNet | 108.68 | 77.92 | 63.00 | 42.04 | 56.57 | 56.71 | 58.59 | 56.95 | 17.14 | 55.23 | 49.48 |
Note: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation.
:blue_car: nuScenes-C
<p align="center"> <img src="docs/figs/stat/metrics_nusc_seg.png" align="center" width="100%"> </p>Model | mCE (%) | mRR (%) | Clean | Fog | Wet Ground | Snow | Motion Blur | Beam Missing | Cross-Talk | Incomplete Echo | Cross-Sensor |
---|---|---|---|---|---|---|---|---|---|---|---|
FIDNet<sub>34</sub> | 122.42 | 73.33 | 71.38 | 64.80 | 68.02 | 58.97 | 48.90 | 48.14 | 57.45 | 48.76 | 23.70 |
CENet<sub>34</sub> | 112.79 | 76.04 | 73.28 | 67.01 | 69.87 | 61.64 | 58.31 | 49.97 | 60.89 | 53.31 | 24.78 |
FRNet | 98.63 | 77.48 | 77.65 | 69.14 | 76.58 | 69.49 | 54.49 | 68.32 | 41.43 | 58.74 | 43.13 |
WaffleIron | 106.73 | 72.78 | 76.07 | 56.07 | 73.93 | 49.59 | 59.46 | 65.19 | 33.12 | 61.51 | 44.01 |
PolarNet | 115.09 | 76.34 | 71.37 | 58.23 | 69.91 | 64.82 | 44.60 | 61.91 | 40.77 | 53.64 | 42.01 |
<sup>:star:</sup>MinkUNet<sub>18</sub> | 100.00 | 74.44 | 75.76 | 53.64 | 73.91 | 40.35 | 73.39 | 68.54 | 26.58 | 63.83 | 50.95 |
MinkUNet<sub>34</sub> | 96.37 | 75.08 | 76.90 | 56.91 | 74.93 | 37.50 | 75.24 | 70.10 | 29.32 | 64.96 | 52.96 |
Cylinder3D<sub>SPC</sub> | 111.84 | 72.94 | 76.15 | 59.85 | 72.69 | 58.07 | 42.13 | 64.45 | 44.44 | 60.50 | 42.23 |
Cylinder3D<sub>TSC</sub> | 105.56 | 78.08 | 73.54 | 61.42 | 71.02 | 58.40 | 56.02 | 64.15 | 45.36 | 59.97 | 43.03 |
SPVCNN<sub>18</sub> | 106.65 | 74.70 | 74.40 | 59.01 | 72.46 | 41.08 | 58.36 | 65.36 | 36.83 | 62.29 | 49.21 |
SPVCNN<sub>34</sub> | 97.45 | 75.10 | 76.57 | 55.86 | 74.04 | 41.95 | 74.63 | 68.94 | 28.11 | 64.96 | 51.57 |
2DPASS | 98.56 | 75.24 | 77.92 | 64.50 | 76.76 | 54.46 | 62.04 | 67.84 | 34.37 | 63.19 | 45.83 |
GFNet | 92.55 | 83.31 | 76.79 | 69.59 | 75.52 | 71.83 | 59.43 | 64.47 | 66.78 | 61.86 | 42.30 |
Note: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation.
:taxi: WOD-C
<p align="center"> <img src="docs/figs/stat/metrics_wod_seg.png" align="center" width="100%"> </p>Model | mCE (%) | mRR (%) | Clean | Fog | Wet Ground | Snow | Motion Blur | Beam Missing | Cross-Talk | Incomplete Echo | Cross-Sensor |
---|---|---|---|---|---|---|---|---|---|---|---|
<sup>:star:</sup>MinkUNet<sub>18</sub> | 100.00 | 91.22 | 69.06 | 66.99 | 60.99 | 57.75 | 68.92 | 64.15 | 65.37 | 63.36 | 56.44 |
MinkUNet<sub>34</sub> | 96.21 | 91.80 | 70.15 | 68.31 | 62.98 | 57.95 | 70.10 | 65.79 | 66.48 | 64.55 | 59.02 |
Cylinder3D<sub>TSC</sub> | 106.02 | 92.39 | 65.93 | 63.09 | 59.40 | 58.43 | 65.72 | 62.08 | 62.99 | 60.34 | 55.27 |
SPVCNN<sub>18</sub> | 103.60 | 91.60 | 67.35 | 65.13 | 59.12 | 58.10 | 67.24 | 62.41 | 65.46 | 61.79 | 54.30 |
SPVCNN<sub>34</sub> | 98.72 | 92.04 | 69.01 | 67.10 | 62.41 | 57.57 | 68.92 | 64.67 | 64.70 | 64.14 | 58.63 |
Note: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation.
3D Object Detection
The mean average precision (mAP) and nuScenes detection score (NDS) are consistently used as the main indicator for evaluating model performance in our LiDAR semantic segmentation benchmark. The following two metrics are adopted to compare between models' robustness:
- mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline model, which is calculated among all corruption types across three severity levels.
- mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across three severity levels.
:red_car: KITTI-C
<p align="center"> <img src="docs/figs/stat/metrics_kittic.png" align="center" width="100%"> </p>Model | mCE (%) | mRR (%) | Clean | Fog | Wet Ground | Snow | Motion Blur | Beam Missing | Cross-Talk | Incomplete Echo | Cross-Sensor |
---|---|---|---|---|---|---|---|---|---|---|---|
PointPillars | 110.67 | 74.94 | 66.70 | 45.70 | 66.71 | 35.77 | 47.09 | 52.24 | 60.01 | 54.84 | 37.50 |
SECOND | 95.93 | 82.94 | 68.49 | 53.24 | 68.51 | 54.92 | 49.19 | 54.14 | 67.19 | 59.25 | 48.00 |
PointRCNN | 91.88 | 83.46 | 70.26 | 56.31 | 71.82 | 50.20 | 51.52 | 56.84 | 65.70 | 62.02 | 54.73 |
PartA2<sub>Free</sub> | 82.22 | 81.87 | 76.28 | 58.06 | 76.29 | 58.17 | 55.15 | 59.46 | 75.59 | 65.66 | 51.22 |
PartA2<sub>Anchor</sub> | 88.62 | 80.67 | 73.98 | 56.59 | 73.97 | 51.32 | 55.04 | 56.38 | 71.72 | 63.29 | 49.15 |
PVRCNN | 90.04 | 81.73 | 72.36 | 55.36 | 72.89 | 52.12 | 54.44 | 56.88 | 70.39 | 63.00 | 48.01 |
<sup>:star:</sup>CenterPoint | 100.00 | 79.73 | 68.70 | 53.10 | 68.71 | 48.56 | 47.94 | 49.88 | 66.00 | 58.90 | 45.12 |
SphereFormer | - | - | - | - | - | - | - | - | - | - | - |
Note: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation.
:blue_car: nuScenes-C
<p align="center"> <img src="docs/figs/stat/metrics_nusc_det.png" align="center" width="100%"> </p>Model | mCE (%) | mRR (%) | Clean | Fog | Wet Ground | Snow | Motion Blur | Beam Missing | Cross-Talk | Incomplete Echo | Cross-Sensor |
---|---|---|---|---|---|---|---|---|---|---|---|
PointPillars<sub>MH</sub> | 102.90 | 77.24 | 43.33 | 33.16 | 42.92 | 29.49 | 38.04 | 33.61 | 34.61 | 30.90 | 25.00 |
SECOND<sub>MH</sub> | 97.50 | 76.96 | 47.87 | 38.00 | 47.59 | 33.92 | 41.32 | 35.64 | 40.30 | 34.12 | 23.82 |
<sup>:star:</sup>CenterPoint | 100.00 | 76.68 | 45.99 | 35.01 | 45.41 | 31.23 | 41.79 | 35.16 | 35.22 | 32.53 | 25.78 |
CenterPoint<sub>LR</sub> | 98.74 | 72.49 | 49.72 | 36.39 | 47.34 | 32.81 | 40.54 | 34.47 | 38.11 | 35.50 | 23.16 |
CenterPoint<sub>HR</sub> | 95.80 | 75.26 | 50.31 | 39.55 | 49.77 | 34.73 | 43.21 | 36.21 | 40.98 | 35.09 | 23.38 |
SphereFormer | - | - | - | - | - | - | - | - | - | - | - |
Note: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation.
:taxi: WOD-C
<p align="center"> <img src="docs/figs/stat/metrics_wod_det.png" align="center" width="100%"> </p>Model | mCE (%) | mRR (%) | Clean | Fog | Wet Ground | Snow | Motion Blur | Beam Missing | Cross-Talk | Incomplete Echo | Cross-Sensor |
---|---|---|---|---|---|---|---|---|---|---|---|
PointPillars | 127.53 | 81.23 | 50.17 | 31.24 | 49.75 | 46.07 | 34.93 | 43.93 | 39.80 | 43.41 | 36.67 |
SECOND | 121.43 | 81.12 | 53.37 | 32.89 | 52.99 | 47.20 | 35.98 | 44.72 | 49.28 | 46.84 | 36.43 |
PVRCNN | 104.90 | 82.43 | 61.27 | 37.32 | 61.27 | 60.38 | 42.78 | 49.53 | 59.59 | 54.43 | 38.73 |
<sup>:star:</sup>CenterPoint | 100.00 | 83.30 | 63.59 | 43.06 | 62.84 | 58.59 | 43.53 | 54.41 | 60.32 | 57.01 | 43.98 |
PVRCNN++ | 91.60 | 84.14 | 67.45 | 45.50 | 67.18 | 62.71 | 47.35 | 57.83 | 64.71 | 60.96 | 47.77 |
SphereFormer | - | - | - | - | - | - | - | - | - | - | - |
Note: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation.
:vertical_traffic_light: More Benchmarking Results
For more detailed experimental results and visual comparisons, please refer to RESULTS.md.
Create Corruption Set
You can manage to create your own "Robo3D" corruption sets on other LiDAR-based point cloud datasets using our defined corruption types! Follow the instructions listed in CREATE.md.
TODO List
- Initial release. 🚀
- Add scripts for creating common corruptions.
- Add download links for corruption sets.
- Add evaluation scripts on corruption sets.
- Release checkpoints.
- ...
Citation
If you find this work helpful, please kindly consider citing our paper:
@inproceedings{kong2023robo3d,
author = {Lingdong Kong and Youquan Liu and Xin Li and Runnan Chen and Wenwei Zhang and Jiawei Ren and Liang Pan and Kai Chen and Ziwei Liu},
title = {Robo3D: Towards Robust and Reliable 3D Perception against Corruptions},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
pages = {19994--20006},
year = {2023},
}
@misc{kong2023robo3d_benchmark,
title = {The Robo3D Benchmark for Robust and Reliable 3D Perception},
author = {Lingdong Kong and Youquan Liu and Xin Li and Runnan Chen and Wenwei Zhang and Jiawei Ren and Liang Pan and Kai Chen and Ziwei Liu},
howpublished = {\url{https://github.com/ldkong1205/Robo3D}},
year = {2023},
}
License
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a> <br /> This work is under the <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>, while some specific operations in this codebase might be with other licenses. Please refer to LICENSE.md for a more careful check, if you are using our code for commercial matters.
Acknowledgements
This work is developed based on the MMDetection3D codebase.
<img src="https://github.com/open-mmlab/mmdetection3d/blob/main/resources/mmdet3d-logo.png" width="30%"/><br> MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.
:heart: We thank Jiangmiao Pang and Tai Wang for their insightful discussions and feedback. We thank the OpenDataLab platform for hosting our datasets.