Home

Awesome

SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud

By Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, Kurt Keutzer (UC Berkeley)

This repository contains a tensorflow implementation of SqueezeSegV2, an improved convolutional neural network model for LiDAR segmentation and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud.

Please refer to our video for a high level introduction of this work: https://www.youtube.com/watch?v=ZitFO1_YpNM. For more details, please refer to our SqueezeSegV2 paper: https://arxiv.org/abs/1809.08495. If you find this work useful for your research, please consider citing:

 @inproceedings{wu2018squeezesegv2,
   title={SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation
   for Road-Object Segmentation from a LiDAR Point Cloud},
   author={Wu, Bichen and Zhou, Xuanyu and Zhao, Sicheng and Yue, Xiangyu and Keutzer, Kurt},
   booktitle={ICRA},
   year={2019},
 }
@inproceedings{wu2017squeezeseg,
   title={Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud},
   author={Wu, Bichen and Wan, Alvin and Yue, Xiangyu and Keutzer, Kurt},
   booktitle={ICRA}, 
   year={2018}
 }
 @inproceedings{yue2018lidar,
   title={A lidar point cloud generator: from a virtual world to autonomous driving},
   author={Yue, Xiangyu and Wu, Bichen and Seshia, Sanjit A and Keutzer, Kurt and Sangiovanni-Vincentelli, Alberto L},
   booktitle={ICMR},
   pages={458--464},
   year={2018},
   organization={ACM}
 }

License

SqueezeSegV2 is released under the BSD license (See LICENSE for details). The dataset used for training, evaluation, and demostration of SqueezeSegV2 is modified from KITTI raw dataset. For your convenience, we provide links to download the converted dataset, which is distrubited under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Installation:

The instructions are tested on Ubuntu 16.04 with python 2.7 and tensorflow 1.4 with GPU support.

Demo:

Dataset:

Training/Validation