Awesome
SparseBEV
This is the official PyTorch implementation for our ICCV 2023 paper:
SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos<br> Haisong Liu, Yao Teng, Tao Lu, Haiguang Wang, Limin Wang<br>Nanjing University, Shanghai AI Lab
中文解读:https://zhuanlan.zhihu.com/p/654821380
News
- 2024-03-31: The code of SparseOcc is released at https://github.com/MCG-NJU/SparseOcc.
- 2023-12-29: Check out our new paper (https://arxiv.org/abs/2312.17118) to learn about SparseOcc, a fully sparse architecture for panoptic occupancy!
- 2023-10-20: We provide code for visualizing the predictions and the sampling points, as requested in #25.
- 2023-09-23: We release the native PyTorch implementation of sparse sampling. You can use this version if you encounter problems when compiling CUDA operators. It’s only about 15% slower.
- 2023-08-21: We release the paper, code and pretrained weights.
- 2023-07-14: SparseBEV is accepted to ICCV 2023.
- 2023-02-09: SparseBEV-Beta achieves 65.6 NDS on the nuScenes leaderboard.
Model Zoo
Setting | Pretrain | Training Cost | NDS<sub>val</sub> | NDS<sub>test</sub> | FPS | Weights |
---|---|---|---|---|---|---|
r50_nuimg_704x256 | nuImg | 21h (8x2080Ti) | 55.6 | - | 15.8 | gdrive |
r50_nuimg_704x256_400q_36ep | nuImg | 28h (8x2080Ti) | 55.8 | - | 23.5 | gdrive |
r101_nuimg_1408x512 | nuImg | 2d8h (8xV100) | 59.2 | - | 6.5 | gdrive |
vov99_dd3d_1600x640_trainval_future | DD3D | 4d1h (8xA100) | 84.9 | 67.5 | - | gdrive |
vit_eva02_1600x640_trainval_future | EVA02 | 11d (8xA100) | 85.3 | 70.2 | - | gdrive |
- We use
r50_nuimg_704x256
for ablation studies andr50_nuimg_704x256_400q_36ep
for comparison with others. - We recommend using
r50_nuimg_704x256
to validate new ideas since it trains faster and the result is more stable. - FPS is measured with AMD 5800X CPU and RTX 3090 GPU (without
fp16
). - The noise is around 0.3 NDS.
Environment
Install PyTorch 2.0 + CUDA 11.8:
conda create -n sparsebev python=3.8
conda activate sparsebev
conda install pytorch==2.0.0 torchvision==0.15.0 pytorch-cuda=11.8 -c pytorch -c nvidia
or PyTorch 1.10.2 + CUDA 10.2 for older GPUs:
conda create -n sparsebev python=3.8
conda activate sparsebev
conda install pytorch==1.10.2 torchvision==0.11.3 cudatoolkit=10.2 -c pytorch
Install other dependencies:
pip install openmim
mim install mmcv-full==1.6.0
mim install mmdet==2.28.2
mim install mmsegmentation==0.30.0
mim install mmdet3d==1.0.0rc6
pip install setuptools==59.5.0
pip install numpy==1.23.5
Install turbojpeg and pillow-simd to speed up data loading (optional but important):
sudo apt-get update
sudo apt-get install -y libturbojpeg
pip install pyturbojpeg
pip uninstall pillow
pip install pillow-simd==9.0.0.post1
Compile CUDA extensions:
cd models/csrc
python setup.py build_ext --inplace
Prepare Dataset
- Download nuScenes from https://www.nuscenes.org/nuscenes and put it in
data/nuscenes
. - Download the generated info file from Google Drive and unzip it.
- Folder structure:
data/nuscenes
├── maps
├── nuscenes_infos_test_sweep.pkl
├── nuscenes_infos_train_sweep.pkl
├── nuscenes_infos_train_mini_sweep.pkl
├── nuscenes_infos_val_sweep.pkl
├── nuscenes_infos_val_mini_sweep.pkl
├── samples
├── sweeps
├── v1.0-test
└── v1.0-trainval
These *.pkl
files can also be generated with our script: gen_sweep_info.py
.
Training
Download pretrained weights and put it in directory pretrain/
:
pretrain
├── cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804-45215b1e.pth
├── cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951-40963960.pth
Train SparseBEV with 8 GPUs:
torchrun --nproc_per_node 8 train.py --config configs/r50_nuimg_704x256.py
Train SparseBEV with 4 GPUs (i.e the last four GPUs):
export CUDA_VISIBLE_DEVICES=4,5,6,7
torchrun --nproc_per_node 4 train.py --config configs/r50_nuimg_704x256.py
The batch size for each GPU will be scaled automatically. So there is no need to modify the batch_size
in config files.
Evaluation
Single-GPU evaluation:
export CUDA_VISIBLE_DEVICES=0
python val.py --config configs/r50_nuimg_704x256.py --weights checkpoints/r50_nuimg_704x256.pth
Multi-GPU evaluation:
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
torchrun --nproc_per_node 8 val.py --config configs/r50_nuimg_704x256.py --weights checkpoints/r50_nuimg_704x256.pth
Timing
FPS is measured with a single GPU:
export CUDA_VISIBLE_DEVICES=0
python timing.py --config configs/r50_nuimg_704x256.py --weights checkpoints/r50_nuimg_704x256.pth
Visualization
Visualize the predicted bbox:
python viz_bbox_predictions.py --config configs/r50_nuimg_704x256.py --weights checkpoints/r50_nuimg_704x256.pth
Visualize the sampling points (like Fig. 6 in the paper):
python viz_sample_points.py --config configs/r50_nuimg_704x256.py --weights checkpoints/r50_nuimg_704x256.pth
Acknowledgements
Many thanks to these excellent open-source projects:
- 3D Detection: DETR3D, PETR, BEVFormer, BEVDet, StreamPETR
- 2D Detection: AdaMixer, DN-DETR
- Codebase: MMDetection3D, CamLiFlow