Home

Awesome

<div align="center"> <h1>StreamPETR</h1> <h3>[ICCV2023] Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D Object Detection</h3> </div>

PWC PWC arXiv

<div align="center"> <img src="figs/framework.png" width="800"/> </div><br/>

Introduction

This repository is an official implementation of StreamPETR.

News

Getting Started

Please follow our documentation step by step. If you like our work, please recommend it to your colleagues and friends.

  1. Environment Setup.
  2. Data Preparation.
  3. Training and Inference.

Model Zoo

<div align="center"> <img src="figs/fps.png" width="550"/> </div><br/>

Results on NuScenes Val Set.

ModelSettingPretrainLr SchdTraining TimeNDSmAPFPS-pytorchConfigDownload
RepDETR3DEVA02-L - 900qEVA02-L24ep12 hours (A100)60.852.1-configmodel
StreamPETRV2-99 - 900qFCOS3D24ep13 hours57.148.212.5configmodel/log
RepDETR3DV2-99 - 900qFCOS3D24ep13 hours58.450.113.1configmodel/log
StreamPETRR50 - 900qImageNet90ep36 hours53.743.226.7configmodel/log
StreamPETRR50 - 428qNuImg60ep26 hours54.644.931.7configmodel/log

The detailed results can be found in the training log. For other results on nuScenes val set, please see Here. Notes:

Results on NuScenes Test Set.

ModelSettingPretrainNDSmAPAMOTAAMOTP
StreamPETRV2-99 - 900qDD3D63.655.0--
StreamPETRViT-Large-900q-67.662.065.387.6

Currently Supported Features

Acknowledgements

We thank these great works and open-source codebases:

Citation

If you find StreamPETR is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.

@article{wang2023exploring,
  title={Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D Object Detection},
  author={Wang, Shihao and Liu, Yingfei and Wang, Tiancai and Li, Ying and Zhang, Xiangyu},
  journal={arXiv preprint arXiv:2303.11926},
  year={2023}
}