Home

Awesome

SwinIR: Image Restoration Using Swin Transformer

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, Radu Timofte

Computer Vision Lab, ETH Zurich


arXiv GitHub Stars download visitors <a href="https://colab.research.google.com/gist/JingyunLiang/a5e3e54bc9ef8d7bf594f6fee8208533/swinir-demo-on-real-world-image-sr.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> <a href="https://replicate.ai/jingyunliang/swinir"><img src="https://img.shields.io/static/v1?label=Replicate&message=Demo and Docker Image&color=blue"></a> PlayTorch Demo Gradio Web Demo

This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Window Transformer (arxiv, supp, pretrained models, visual results). SwinIR achieves state-of-the-art performance in

</br>

:rocket: :rocket: :rocket: News:

Real-World Image (x4)BSRGAN, ICCV2021Real-ESRGANSwinIR (ours)SwinIR-Large (ours)
<img width="200" src="figs/ETH_LR.png"><img width="200" src="figs/ETH_BSRGAN.png"><img width="200" src="figs/ETH_realESRGAN.jpg"><img width="200" src="figs/ETH_SwinIR.png"><img width="200" src="figs/ETH_SwinIR-L.png">
<img width="200" src="figs/OST_009_crop_LR.png"><img width="200" src="figs/OST_009_crop_BSRGAN.png"><img width="200" src="figs/OST_009_crop_realESRGAN.png"><img width="200" src="figs/OST_009_crop_SwinIR.png"><img width="200" src="figs/OST_009_crop_SwinIR-L.png">

Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by up to 0.14~0.45dB, while the total number of parameters can be reduced by up to 67%.

<p align="center">
<img width="800" src="figs/SwinIR_archi.png"> </p>

Contents

  1. Training
  2. Testing
  3. Results
  4. Citation
  5. License and Acknowledgement

Training

Used training and testing sets can be downloaded as follows:

TaskTraining SetTesting SetVisual Results
classical/lightweight image SRDIV2K (800 training images) or DIV2K +Flickr2K (2650 images)Set5 + Set14 + BSD100 + Urban100 + Manga109 download allhere
real-world image SRSwinIR-M (middle size): DIV2K (800 training images) +Flickr2K (2650 images) + OST (alternative link, 10324 images for sky,water,grass,mountain,building,plant,animal) <br /> SwinIR-L (large size): DIV2K + Flickr2K + OST + WED(4744 images) + FFHQ (first 2000 images, face) + Manga109 (manga) + SCUT-CTW1500 (first 100 training images, texts) <br /><br /> *We use the pionnerring practical degradation model from BSRGAN, ICCV2021 GitHub StarsRealSRSet+5imageshere
color/grayscale image denoisingDIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images) <br /><br /> *BSD68/BSD100 images are not used in training.grayscale: Set12 + BSD68 + Urban100 <br /> color: CBSD68 + Kodak24 + McMaster + Urban100 download allhere
grayscale/color JPEG compression artifact reductionDIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images)grayscale: Classic5 +LIVE1 download allhere
<!-- | Task | Training Set | Testing Set| Pretrained Model and Visual Results of SwinIR | | :--- | :---: | :---: |:---: | | image denoising (real) | [SIDD-Medium-sRGB](https://www.eecs.yorku.ca/~kamel/sidd/dataset.php) (320 images, [preprocess]()) + [RENOIR](http://ani.stat.fsu.edu/~abarbu/Renoir.html) (221 images, [preprocess](https://github.com/zsyOAOA/DANet/blob/master/datasets/preparedata/Renoir_big2small_all.py)) + [Poly](https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset) (40 images in ./OriginalImages) | [SIDD validation set](https://drive.google.com/drive/folders/1S44fHXaVxAYW3KLNxK41NYCnyX9S79su) (1280 patches, identical to official [.mat](https://www.eecs.yorku.ca/~kamel/sidd/benchmark.php) version) + [DND](https://noise.visinf.tu-darmstadt.de/downloads/) (pre-defined 100 patches of 50 images, [online eval](https://noise.visinf.tu-darmstadt.de/submit/)) + [Nam](https://www.dropbox.com/s/24kds7c436i5i11/real_image_noise_dataset.zip?dl=0) (random 100 patches of 17 images, [preprocess](https://github.com/zsyOAOA/DANet/blob/master/datasets/preparedata/Nam_patch_prepare.py))|[download model]() [download results]() | | image deblurring (synthetic) | [GoPro](https://drive.google.com/drive/folders/1AsgIP9_X0bg0olu2-1N6karm2x15cJWE) (2103 training images) | [GoPro](https://drive.google.com/drive/folders/1a2qKfXWpNuTGOm2-Jex8kfNSzYJLbqkf) (1111 images) + [HIDE](https://drive.google.com/drive/folders/1nRsTXj4iTUkTvBhTcGg8cySK8nd3vlhK) (2050 images) + [RealBlur_J](https://drive.google.com/drive/folders/1KYtzeKCiDRX9DSvC-upHrCqvC4sPAiJ1) (real blur, 980 images) + [RealBlur_R](https://drive.google.com/drive/folders/1EwDoajf5nStPIAcU4s9rdc8SPzfm3tW1) (real blur, 980 images) | [download model]() [download results]()| | image deraining (synthetic) | [Multiple datasets](https://drive.google.com/drive/folders/1Hnnlc5kI0v9_BtfMytC2LR5VpLAFZtVe) (13711 training images, see Table 1 of [MPRNet](https://github.com/swz30/MPRNet) for details.) | Rain100H (100 images) + Rain100L (100 images) + Test100 (100 images) + Test2800 (2800 images) + Test1200 (1200 images), [download all](https://drive.google.com/drive/folders/1PDWggNh8ylevFmrjo-JEvlmqsDlWWvZs) | [download model]() [download results]()| Note: above datasets may come from the official release or some awesome collections ([BasicSR](https://github.com/xinntao/BasicSR), [MPRNet](https://github.com/swz30/MPRNet)). -->

The training code is at KAIR.

Testing (without preparing datasets)

For your convience, we provide some example datasets (~20Mb) in /testsets. If you just want codes, downloading models/network_swinir.py, utils/util_calculate_psnr_ssim.py and main_test_swinir.py is enough. Following commands will download pretrained models automatically and put them in model_zoo/swinir. All visual results of SwinIR can be downloaded here.

We also provide an online Colab demo for real-world image SR <a href="https://colab.research.google.com/gist/JingyunLiang/a5e3e54bc9ef8d7bf594f6fee8208533/swinir-demo-on-real-world-image-sr.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> for comparison with the first practical degradation model BSRGAN (ICCV2021) GitHub Stars and a recent model RealESRGAN. Try to test your own images on Colab!

We provide a PlayTorch demo PlayTorch Demo for real-world image SR to showcase how to run the SwinIR model in mobile application built with React Native.

# 001 Classical Image Super-Resolution (middle size)
# Note that --training_patch_size is just used to differentiate two different settings in Table 2 of the paper. Images are NOT tested patch by patch.
# (setting1: when model is trained on DIV2K and with training_patch_size=48)
python main_test_swinir.py --task classical_sr --scale 2 --training_patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth --folder_lq testsets/Set5/LR_bicubic/X2 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task classical_sr --scale 3 --training_patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth --folder_lq testsets/Set5/LR_bicubic/X3 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task classical_sr --scale 4 --training_patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth --folder_lq testsets/Set5/LR_bicubic/X4 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task classical_sr --scale 8 --training_patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth --folder_lq testsets/Set5/LR_bicubic/X8 --folder_gt testsets/Set5/HR

# (setting2: when model is trained on DIV2K+Flickr2K and with training_patch_size=64)
python main_test_swinir.py --task classical_sr --scale 2 --training_patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth --folder_lq testsets/Set5/LR_bicubic/X2 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task classical_sr --scale 3 --training_patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth --folder_lq testsets/Set5/LR_bicubic/X3 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task classical_sr --scale 4 --training_patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth --folder_lq testsets/Set5/LR_bicubic/X4 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task classical_sr --scale 8 --training_patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth --folder_lq testsets/Set5/LR_bicubic/X8 --folder_gt testsets/Set5/HR


# 002 Lightweight Image Super-Resolution (small size)
python main_test_swinir.py --task lightweight_sr --scale 2 --model_path model_zoo/swinir/002_lightweightSR_DIV2K_s64w8_SwinIR-S_x2.pth --folder_lq testsets/Set5/LR_bicubic/X2 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task lightweight_sr --scale 3 --model_path model_zoo/swinir/002_lightweightSR_DIV2K_s64w8_SwinIR-S_x3.pth --folder_lq testsets/Set5/LR_bicubic/X3 --folder_gt testsets/Set5/HR
python main_test_swinir.py --task lightweight_sr --scale 4 --model_path model_zoo/swinir/002_lightweightSR_DIV2K_s64w8_SwinIR-S_x4.pth --folder_lq testsets/Set5/LR_bicubic/X4 --folder_gt testsets/Set5/HR


# 003 Real-World Image Super-Resolution (use --tile 400 if you run out-of-memory)
# (middle size)
python main_test_swinir.py --task real_sr --scale 4 --model_path model_zoo/swinir/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth --folder_lq testsets/RealSRSet+5images --tile

# (larger size + trained on more datasets)
python main_test_swinir.py --task real_sr --scale 4 --large_model --model_path model_zoo/swinir/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth --folder_lq testsets/RealSRSet+5images


# 004 Grayscale Image Deoising (middle size)
python main_test_swinir.py --task gray_dn --noise 15 --model_path model_zoo/swinir/004_grayDN_DFWB_s128w8_SwinIR-M_noise15.pth --folder_gt testsets/Set12
python main_test_swinir.py --task gray_dn --noise 25 --model_path model_zoo/swinir/004_grayDN_DFWB_s128w8_SwinIR-M_noise25.pth --folder_gt testsets/Set12
python main_test_swinir.py --task gray_dn --noise 50 --model_path model_zoo/swinir/004_grayDN_DFWB_s128w8_SwinIR-M_noise50.pth --folder_gt testsets/Set12


# 005 Color Image Deoising (middle size)
python main_test_swinir.py --task color_dn --noise 15 --model_path model_zoo/swinir/005_colorDN_DFWB_s128w8_SwinIR-M_noise15.pth --folder_gt testsets/McMaster
python main_test_swinir.py --task color_dn --noise 25 --model_path model_zoo/swinir/005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth --folder_gt testsets/McMaster
python main_test_swinir.py --task color_dn --noise 50 --model_path model_zoo/swinir/005_colorDN_DFWB_s128w8_SwinIR-M_noise50.pth --folder_gt testsets/McMaster


# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding uses 8x8 blocks)
# grayscale
python main_test_swinir.py --task jpeg_car --jpeg 10 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg10.pth --folder_gt testsets/classic5
python main_test_swinir.py --task jpeg_car --jpeg 20 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg20.pth --folder_gt testsets/classic5
python main_test_swinir.py --task jpeg_car --jpeg 30 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg30.pth --folder_gt testsets/classic5
python main_test_swinir.py --task jpeg_car --jpeg 40 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg40.pth --folder_gt testsets/classic5

# color
python main_test_swinir.py --task color_jpeg_car --jpeg 10 --model_path model_zoo/swinir/006_colorCAR_DFWB_s126w7_SwinIR-M_jpeg10.pth --folder_gt testsets/LIVE1
python main_test_swinir.py --task color_jpeg_car --jpeg 20 --model_path model_zoo/swinir/006_colorCAR_DFWB_s126w7_SwinIR-M_jpeg20.pth --folder_gt testsets/LIVE1
python main_test_swinir.py --task color_jpeg_car --jpeg 30 --model_path model_zoo/swinir/006_colorCAR_DFWB_s126w7_SwinIR-M_jpeg30.pth --folder_gt testsets/LIVE1
python main_test_swinir.py --task color_jpeg_car --jpeg 40 --model_path model_zoo/swinir/006_colorCAR_DFWB_s126w7_SwinIR-M_jpeg40.pth --folder_gt testsets/LIVE1


Results

We achieved state-of-the-art performance on classical/lightweight/real-world image SR, grayscale/color image denoising and JPEG compression artifact reduction. Detailed results can be found in the paper. All visual results of SwinIR can be downloaded here.

<details> <summary>Classical Image Super-Resolution (click me)</summary> <p align="center"> <img width="900" src="figs/classic_image_sr.png"> <img width="900" src="figs/classic_image_sr_visual.png"> </p>
MethodTraining SetTraining time <br /> (8GeForceRTX2080Ti <br /> batch=32, iter=500k)Y-PSNR/Y-SSIM <br /> on Manga109Run time <br /> (1GeForceRTX2080Ti,<br /> on 256x256 LR image)*#Params#FLOPsTesting memory
RCANDIV2K1.6 days31.22/0.91730.180s15.6M850.6G593.1M
SwinIRDIV2K1.8 days31.67/0.92260.539s11.9M788.6G986.8M

* We re-test the runtime when the GPU is idle. We refer to the evluation code here.

Training Setscale factorPSNR (RGB)PSNR (Y)SSIM (RGB)SSIM (Y)
DIV2K (800 images)235.2536.770.94230.9500
DIV2K+Flickr2K (2650 images)235.3436.860.94300.9507
DIV2K (800 images)331.5032.970.88320.8965
DIV2K+Flickr2K (2650 images)331.6333.100.88540.8985
DIV2K (800 images)429.4830.940.83110.8492
DIV2K+Flickr2K (2650 images)429.6331.080.83470.8523
</details> <details> <summary>Lightweight Image Super-Resolution</summary> <p align="center"> <img width="900" src="figs/lightweight_image_sr.png"> </p> </details> <details> <summary>Real-World Image Super-Resolution</summary> <p align="center"> <img width="900" src="figs/real_world_image_sr.png"> </p> </details> <details> <summary>Grayscale Image Deoising</summary> <p align="center"> <img width="900" src="figs/gray_image_denoising.png"> </p> </details> <details> <summary>Color Image Deoising</summary> <p align="center"> <img width="900" src="figs/color_image_denoising.png"> </p> </details> <details> <summary>JPEG Compression Artifact Reduction</summary>

on grayscale images

<p align="center"> <img width="900" src="figs/jepg_compress_artfact_reduction.png"> </p>

on color images

Training Setquality factorPSNR (RGB)PSNR-B (RGB)SSIM (RGB)
LIVE11028.0627.760.8089
LIVE12030.4529.970.8741
LIVE13031.8231.240.9018
LIVE14032.7532.120.9174
</details>

Citation

@article{liang2021swinir,
  title={SwinIR: Image Restoration Using Swin Transformer},
  author={Liang, Jingyun and Cao, Jiezhang and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  journal={arXiv preprint arXiv:2108.10257},
  year={2021}
}

License and Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on Swin Transformer and KAIR. Please also follow their licenses. Thanks for their awesome works.