Home

Awesome

<div align="center"> <h2>Dynamic Implicit Image Function for Efficient Arbitrary-Scale Super-Resolution</h2> <br> <a href="https://github.com/HeZongyao">Zongyao He</a><sup><span>1</span></sup>, <a href="https://ise.sysu.edu.cn/teacher/teacher02/1384977.htm">Zhi Jin</a><sup><span>1,Corresponding author</span></sup>

<sup>1</sup> SUN YAT-SEN University <br>

<div>

project page arxiv paper license

</div> </div>

Introduction

This repository contains the official PyTorch implementation for the ICME 2024 paper titled "Dynamic Implicit Image Function for Efficient Arbitrary-Scale Super-Resolution" by Zongyao He and Zhi Jin.

<div align="center"> <img src="assets/comparison.png" alt="Performance comparison" width="50%" /> <br>

Qualitative and efficiency (320 × 180 input) comparison for ASSR

</div> <div align="center"> <img src="assets/framework.png" alt="Framework" /> <br>

Framework of DIIF

</div>

Abstract

Implicit Neural Representation (INR)-based methods have achieved remarkable success in Arbitrary-Scale Super Resolution (ASSR). However, these continuous image representations, where pixel values in a continuous spatial domain are inferred from a decoder, suffer from rapidly increasing computational cost as the scale factor increases.

To address this challenge, we propose a Dynamic Implicit Image Function (DIIF) for efficient ASSR. Instead of independently using each image coordinate and its nearby 2D features as decoder inputs, DIIF introduces a coordinate grouping and slicing strategy to decode pixel value slices from coordinate slices. To perform efficient arbitrary-scale decoding, we further introduce a dynamic coordinate slicing strategy empowered by our Coarse-to-Fine MLP (C2F-MLP), which allows adjusting the number of coordinates in each slice as the scale factor varies.

Extensive experiments demonstrate that DIIF can seamlessly integrate with INR-based ASSR methods, significantly reducing computational cost and runtime, while maintaining State-Of-The-Art (SOTA) SR performance.

Train & Test

Train EDSR-baseline-DLIIF and RDN-DLIIF (small model):

python train.py --config options/train/train_edsr-dliif-s.json
python train.py --config options/train/train_rdn-dliif-s.json

Train EDSR-baseline-DLIIF and RDN-DLIIF (medium model):

python train.py --config options/train/train_edsr-dliif-m.json
python train.py --config options/train/train_rdn-dliif-m.json

Test EDSR-DLIIF and RDN-DLIIF (small model):

python test.py --config options/test/test_edsr-dliif-s.json
python test.py --config options/test/test_rdn-dliif-s.json

Test EDSR-DLIIF and RDN-DLIIF (medium model):

python test.py --config options/test/test_edsr-dliif-m.json
python test.py --config options/test/test_rdn-dliif-m.json

Acknowledgement

This work was supported by Frontier Vision Lab, SUN YAT-SEN University.

Special acknowledgment goes to the following projects: LIIF and LTE.

Citation

If you find this work helpful, please consider citing:

@misc{he2023dynamic,
      title={Dynamic Implicit Image Function for Efficient Arbitrary-Scale Image Representation}, 
      author={Zongyao He and Zhi Jin},
      year={2023},
      eprint={2306.12321},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Feel free to reach out for any questions or issues related to the code. Thank you for your interest!