Awesome
LIIF
This repository contains the official implementation for LIIF introduced in the following paper:
Learning Continuous Image Representation with Local Implicit Image Function <br> Yinbo Chen, Sifei Liu, Xiaolong Wang <br> CVPR 2021 (Oral)
The project page with video is at https://yinboc.github.io/liif/.
<img src="https://user-images.githubusercontent.com/10364424/102488232-b3c96080-40a6-11eb-905f-a1a21b7c6f8a.png" width="200">Citation
If you find our work useful in your research, please cite:
@inproceedings{chen2021learning,
title={Learning continuous image representation with local implicit image function},
author={Chen, Yinbo and Liu, Sifei and Wang, Xiaolong},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={8628--8638},
year={2021}
}
Environment
- Python 3
- Pytorch 1.6.0
- TensorboardX
- yaml, numpy, tqdm, imageio
Quick Start
- Download a DIV2K pre-trained model.
Model | File size | Download |
---|---|---|
EDSR-baseline-LIIF | 18M | Dropbox | Google Drive |
RDN-LIIF | 256M | Dropbox | Google Drive |
- Convert your image to LIIF and present it in a given resolution (with GPU 0,
[MODEL_PATH]
denotes the.pth
file)
python demo.py --input xxx.png --model [MODEL_PATH] --resolution [HEIGHT],[WIDTH] --output output.png --gpu 0
Reproducing Experiments
Data
mkdir load
for putting the dataset folders.
-
DIV2K:
mkdir
andcd
intoload/div2k
. Download HR images and bicubic validation LR images from DIV2K website (i.e. Train_HR, Valid_HR, Valid_LR_X2, Valid_LR_X3, Valid_LR_X4).unzip
these files to get the image folders. -
benchmark datasets:
cd
intoload/
. Download andtar -xf
the benchmark datasets (provided by this repo), get aload/benchmark
folder with sub-foldersSet5/, Set14/, B100/, Urban100/
. -
celebAHQ:
mkdir load/celebAHQ
andcp scripts/resize.py load/celebAHQ/
, thencd load/celebAHQ/
. Download andunzip
data1024x1024.zip from the Google Drive link (provided by this repo). Runpython resize.py
and get image folders256/, 128/, 64/, 32/
. Download the split.json.
Running the code
0. Preliminaries
-
For
train_liif.py
ortest.py
, use--gpu [GPU]
to specify the GPUs (e.g.--gpu 0
or--gpu 0,1
). -
For
train_liif.py
, by default, the save folder is atsave/_[CONFIG_NAME]
. We can use--name
to specify a name if needed. -
For dataset args in configs,
cache: in_memory
denotes pre-loading into memory (may require large memory, e.g. ~40GB for DIV2K),cache: bin
denotes creating binary files (in a sibling folder) for the first time,cache: none
denotes direct loading. We can modify it according to the hardware resources before running the training scripts.
1. DIV2K experiments
Train: python train_liif.py --config configs/train-div2k/train_edsr-baseline-liif.yaml
(with EDSR-baseline backbone, for RDN replace edsr-baseline
with rdn
). We use 1 GPU for training EDSR-baseline-LIIF and 4 GPUs for RDN-LIIF.
Test: bash scripts/test-div2k.sh [MODEL_PATH] [GPU]
for div2k validation set, bash scripts/test-benchmark.sh [MODEL_PATH] [GPU]
for benchmark datasets. [MODEL_PATH]
is the path to a .pth
file, we use epoch-last.pth
in corresponding save folder.
2. celebAHQ experiments
Train: python train_liif.py --config configs/train-celebAHQ/[CONFIG_NAME].yaml
.
Test: python test.py --config configs/test/test-celebAHQ-32-256.yaml --model [MODEL_PATH]
(or test-celebAHQ-64-128.yaml
for another task). We use epoch-best.pth
in corresponding save folder.