Awesome
LSNet
This project provides the code and results for 'LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images', IEEE TIP, 2023. IEEE link <br>
Requirements
Python 3.7+, Pytorch 1.5.0+, Cuda 10.2+, TensorboardX 2.1, opencv-python <br> If anything goes wrong with the environment, please check requirements.txt for details.
Architecture and Details
<img src="https://user-images.githubusercontent.com/38373305/218299628-8b7bbdc5-39b2-4d68-9cdb-828e617c0bab.png" alt="drawing" width="400" height="400"/> <img src="https://user-images.githubusercontent.com/38373305/218299686-8a7e7cae-8970-4e56-a4b1-4986b872741f.png" alt="drawing" width="400" height="400"/>
Results
<img src="https://user-images.githubusercontent.com/38373305/218301004-4556a1c6-b76b-44b6-aeab-1f48b15cc17d.png" alt="drawing"/> <img src="https://user-images.githubusercontent.com/38373305/218301024-cbf9bfbc-b3e2-4e44-89a2-106fafeda465.png" alt="drawing"/> <img src="https://user-images.githubusercontent.com/38373305/218301046-2fab51b0-4566-43d0-a861-9d6ee7136cb1.png" alt="drawing"/> <img src="https://user-images.githubusercontent.com/38373305/218301207-f40f0a86-247c-4da2-85a2-a9b17fae4ec8.png" alt="drawing"/>Data Preparation
- Download the RGB-T raw data from baidu, pin: sf9y / Google drive <br>
- Download the RGB-D raw data from baidu, pin: 7pi5 / Google drive <br>
Note that the depth maps of the raw data above are foreground is white.
Training & Testing
modify the train_root
train_root
save_path
path in config.py
according to your own data path.
-
Train the LSNet:
python train.py
modify the test_path
path in config.py
according to your own data path.
-
Test the LSNet:
python test.py
Note that task
in config.py
determines which task and dataset to use.
Evaluate tools
- You can select one of toolboxes to get the metrics CODToolbox / PySODMetrics
Saliency Maps
- RGB-T baidu pin: fxsk / Google drive<br>
- RGB-D baidu pin: 6352 / Google drive<br>
Note that we resize the testing data to the size of 224 * 224 for quicky evaluate. <br> please check our previous works APNet and CCAFNet.
Pretraining Models
- RGB-T baidu pin: wnoa / Google drive <br>
- RGB-D baidu pin: wnoa / Google drive <br>
Citation
@ARTICLE{Zhou_2023_LSNet,
author={Zhou, Wujie and Zhu, Yun and Lei, Jingsheng and Yang, Rongwang and Yu, Lu},
journal={IEEE Transactions on Image Processing},
title={LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images},
year={2023},
volume={32},
number={},
pages={1329-1340},
doi={10.1109/TIP.2023.3242775}}
Acknowledgement
The implement of this project is based on the codebases bellow. <br>
- BBS-Net <br>
- Knowledge-Distillation-Zoo <br>
- Fps/speed test MobileSal
- Evaluate tools CODToolbox / PySODMetrics<br>
If you find this project helpful, Please also cite codebases above.
Contact
Please drop me an email for any problems or discussion: https://wujiezhou.github.io/ (wujiezhou@163.com) or zzzyylink@gmail.com.