Awesome
Code and result about CCAFNet(IEEE TMM)<br> 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEEE TMM
Requirements
Python 3.7, Pytorch 1.5.0+, Cuda 10.2, TensorboardX 2.1, opencv-python
Dataset and Evaluate tools
RGB-D SOD Datasets can be found in: http://dpfan.net/d3netbenchmark/ or https://github.com/jiwei0921/RGBD-SOD-datasets <br>
we use the matlab verison provide by Dengping Fan, and we provide our test datesets 百度网盘 提取码:zust
Result
Test maps: 百度网盘 提取码:zust <br> Pretrained model download:百度网盘 提取码:zust <br> PS: we resize the testing data to the size of 224 * 224 for quicky evaluate, 百度网盘 提取码:zust <br>
Citation
@ARTICLE{9424966,<br> author={Zhou, Wujie and Zhu, Yun and Lei, Jingsheng and Wan, Jian and Yu, Lu},<br> journal={IEEE Transactions on Multimedia}, <br> title={CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images}, <br> year={2021},<br> doi={10.1109/TMM.2021.3077767}}<br>
Acknowledgement
The implement of this project is based on the code of ‘Cascaded Partial Decoder for Fast and Accurate Salient Object Detection, CVPR2019’and 'BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network' proposed by Wu et al and Deng et al.
Contact
Please drop me an email for further problems or discussion: zzzyylink@gmail.com or wujiezhou@163.com