Home

Awesome

BBS-Net

BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network

<p align="center"> <img src="Images/pipeline.png" width="80%"/> <br /> <em> Figure 1: Pipeline of the BBS-Net. </em> </p>

1. Requirements

Python 3.7, Pytorch 0.4.0+, Cuda 10.0, TensorboardX 2.0, opencv-python

2. Data Preparation

3. Training & Testing

4. Results

4.1 Qualitative Comparison

<p align="center"> <img src="Images/resultmap.png" width="80%"/> <br /> <em> Figure 2: Qualitative visual comparison of the proposed model versus 8 SOTA models. </em> </p> <p align="center"> <img src="./Images/detailed-comparisons.png" width="80%"/> <br /> <em> Table 1: Quantitative comparison of models using S-measure max F-measure, max E-measureand MAE scores on 7 datasets. </em> </p> <!-- | Dataset | NJU2K | NLPR | STERE |DES |LFSD |SSD |SIP| | ------- | ----- |---- |----- |--- |---- |--- |---| | S-measure |.921 |.930 |.908 |.933 | .864 | .882|.879 | | F-measure |.920 |.918 |.903 |.927 | .859 | .859|.883 | | E-measure |.949 |.961 |.942 |.966 | .901 | .919|.922 | | MAE | .035 |.023 |.041 |.021 | .072 | .044|.055 | -->

4.2 Results of multiple backbones

<p align="center"> <img src="./Images/backbone_result.png" width="80%"/> <br /> <em> Table 2: Performance comparison using different backbones. </em> </p>

4.3 Download

5. Citation

Please cite the following paper if you use this repository in your reseach.

@inproceedings{fan2020bbsnet,
title={BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network},
author={Fan, Deng-Ping and Zhai, Yingjie and Borji, Ali and Yang, Jufeng and Shao, Ling},
booktitle={ECCV},
year={2020}
}

6. Benchmark RGB-D SOD

The complete RGB-D SOD benchmark can be found in this page:

http://dpfan.net/d3netbenchmark/

7. Acknowledgement

We implement this project based on the code of ‘Cascaded Partial Decoder for Fast and Accurate Salient Object Detection, CVPR2019’ proposed by Wu et al.