Home

Awesome

<p align=center>๐“๐”€๐“ฎ๐“ผ๐“ธ๐“ถ๐“ฎ ๐“Ÿ๐“ช๐“ป๐“ช๐“ถ๐“ฎ๐“ฝ๐“ฎ๐“ป-๐“”๐“ฏ๐“ฏ๐“ฒ๐“ฌ๐“ฒ๐“ฎ๐“ท๐“ฝ ๐“ฃ๐“ป๐“ช๐“ท๐“ผ๐“ฏ๐“ฎ๐“ป ๐“›๐“ฎ๐“ช๐“ป๐“ท๐“ฒ๐“ท๐“ฐ</p>

<div align=center> <p>

GitHub stars GitHub forks GitHub activity GitHub issues

Awesome Maintenance

</p>

๐“ ๐“ฌ๐“ธ๐“ต๐“ต๐“ฎ๐“ฌ๐“ฝ๐“ฒ๐“ธ๐“ท ๐“ธ๐“ฏ ๐“ป๐“ฎ๐“ผ๐“ธ๐“พ๐“ป๐“ฌ๐“ฎ๐“ผ ๐“ธ๐“ท ๐“น๐“ช๐“ป๐“ช๐“ถ๐“ฎ๐“ฝ๐“ฎ๐“ป-๐“ฎ๐“ฏ๐“ฏ๐“ฒ๐“ฌ๐“ฒ๐“ฎ๐“ท๐“ฝ ๐“ฝ๐“ป๐“ช๐“ท๐“ผ๐“ฏ๐“ฎ๐“ป ๐“ต๐“ฎ๐“ช๐“ป๐“ท๐“ฒ๐“ท๐“ฐ.

</div>

โญ <span id="head1"> Citation </span>

If you find our survey and repository useful for your research, please cite it below:


@article{xin2024parameter,
  title={Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey},
  author={Xin, Yi and Luo, Siqi and Zhou, Haodi and Du, Junlong and Liu, Xiaohong and Fan, Yue and Li, Qing and Du, Yuntao},
  journal={arXiv preprint arXiv:2402.02242},
  year={2024}
}

๐Ÿ”ฅ <span id="head1"> News </span>

๐Ÿ“š <span id="head1"> Table of Contents </span>

๐Ÿ“ <span id="head1"> Introduction </span>

<div align="center"> <img src="Overeview.png" width="100%" height="100%"> </div>

๐Ÿ’ฌ <span id="head1"> Keywords </span>

The abbreviation of the work.

The main explored task/application of the work.

Other important information of the work.

๐ŸŒ <span id="head1"> Papers </span>

Addition-based Tuning

Adapter Tuning

Prompt Tuning

Prefix Tuning

Side Tuning

Partial-based Tuning

Specification Tuning

Reparameter Tuning

Unified Tuning

๐ŸŽฏ <span id="head1"> Datasets of Visual PETL </span>

NamePaperLinkNotes
FGVCVisual prompt tuningLinkFGVC consists of 5 benchmarked Fine-Grained Visual Classification tasks.
VTAB-1kA Large-scale Study of Representation Learning with the Visual Task Adaptation BenchmarkLinkVTAB-1k consists of 19 diverse visual classification tasks.
Kinetics-400The kinetics human action video dataset.LinkVideo Action Recognition
SSv2The โ€œsomething somethingโ€ Video Database for Learning and Evaluating Visual Common SenseLinkVideo Action Recognition
HMDB51HMDB:ALargeVideo Database for Human Motion RecognitionLinkVideo Action Recognition
Diving-48RESOUND: Towards Action Recognition without Representation BiasLinkVideo Action Recognition
UCF-101UCF101: A Dataset of 101 Human Actions Classes From Videos in The WildLinkVideo Action Recognition
MSCOCOMicrosoft COCO: Common Objects in ContextLinkInstance Segmentation
ADE20KSemantic Understanding of Scenes through the ADE20K DatasetLinkSemantic Segmentation
PASCALVOCThe Pascal Visual Object Classes Challenge: A RetrospectiveLinkSemantic Segmentation

๐Ÿง’ <span id="head1"> Contribution </span>

<!-- Copy-paste in your Readme.md file --> <a href="https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning/graphs/contributors"> <img src="https://contrib.rocks/image?repo=synbol/Awesome-Parameter-Efficient-Transfer-Learning" /> </a>

:clap: Thanks to the above contributors for this excellent work๏ผ