Home

Awesome

Awesome-RecSys-Works

Papers and works on Recommendation System(RecSys) you must know

Survey Review

TitileBooktitleAuthorsResources
Deep Learning Based Recommender System: A Survey and New PerspectivesACM Computing Surveys (CSUR)'2019Shuai Zhang; Lina Yao; Aixin Sun; Yi Tay[pdf]
Sequential Recommender Systems: Challenges, Progress and ProspectsIJCAI'2019Shoujin Wang; Liang Hu; Yan Wang; Longbing Cao; Quan Z. Sheng; Mehmet Orgun[pdf]
Real-time Personalization using Embeddings for Search Ranking at AirbnbKDD'2018Mihajlo Grbovic (Airbnb); Haibin Cheng (Airbnb)[pdf]
Deep Neural Networks for YouTube RecommendationsRecSys '2016Paul Covington(Google);Jay Adams(Google);Emre Sargin(Google)[pdf]
The Netflix Recommender System: Algorithms, Business Value, and InnovationACM TMIS'2015Carlos A. Gomez-Uribe(Netflix);Neil Hunt(Netflix)[pdf]
MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu’s Sponsored SearchKDD ’19Baidu Search Ads (Phoenix Nest)[pdf]

Click-Through-Rate(CTR) Prediction

TitileBooktitleResources
FM: Factorization MachinesICDM'2010[pdf] [code] [tffm] [fmpytorch]
libFM: Factorization Machines with libFMACM Trans'2012[pdf] [code]
GBDT+LR: Practical Lessons from Predicting Clicks on Ads at FacebookADKDD'14[pdf]
FFM: Field-aware Factorization Machines for CTR PredictionRecSys'2016[pdf] [code]
FNN: Deep Learning over Multi-field Categorical Data: A Case Study on User Response PredictionECIR'2016[pdf][Tensorflow]
PNN: Product-based Neural Networks for User Response PredictionICDM'2016[pdf][Tensorflow]
Wide&Deep: Wide & Deep Learning for Recommender SystemsDLRS'2016[pdf][Tensorflow][Blog]
AFM: Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention NetworksIJCAI'2017[pdf][Tensorflow]
NFM: Neural Factorization Machines for Sparse Predictive AnalyticsSIGIR'2017[pdf][Tensorflow]
DeepFM: DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[C]IJCAI'2017[pdf] [code]
DCN: Deep & Cross Network for Ad Click PredictionsADKDD'2017[pdf] [Keras][Tensorflow]
xDeepFM: xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender SystemsKDD'2018[pdf] [Tensorflow]
DIN: DIN: Deep Interest Network for Click-Through Rate PredictionKDD'2018[pdf] [Tensorflow]
DIEN: DIEN: Deep Interest Evolution Network for Click-Through Rate PredictionAAAI'2019[pdf] [Tensorflow]
DSIN: Deep Session Interest Network for Click-Through Rate PredictionIJCAI'2019[pdf][Tensorflow]
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural NetworksCIKM'2019[pdf][Tensorflow]
FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate PredictionRecSys '19[pdf][Tensorflow]
DeepGBM:A Deep Learning Framework Distilled by GBDT for Online Prediction TasksKDD'2019[pdf][Tensorflow]
FLEN: Leveraging Field for Scalable CTR PredictionAAAI'2020[pdf][Tensorflow]
DFN: Deep Feedback Network for RecommendationIJCAI'2020[pdf][Tensorflow]
AutoDis: An Embedding Learning Framework for Numerical Features in CTR PredictionKDD ’21[pdf]

Retrieval

TitileBooktitleResources
DSSM:Learning Deep Structured Semantic Models for Web Search using Clickthrough DataCIKM'13[pdf][TensorFlow]
EBR:Embedding-based Retrieval in Facebook SearchKDD'20[pdf]
Deep Retrieval: Learning A Retrievable Structure for Large-Scale RecommendationsarXiv'20[pdf]

Sequence-based Recommendations

TitileBooktitleResources
GRU4Rec:Session-based Recommendations with Recurrent Neural NetworksICLR'2016[pdf][code]
DREAM:A Dynamic Recurrent Model for Next Basket RecommendationSIGIR'2016[pdf][code]
Long and Short-Term Recommendations with Recurrent Neural NetworksUMAP’2017[pdf][Theano]
Time-LSTM:What to Do Next: Modeling User Behaviors by Time-LSTMIJCAI'2017[pdf] [code]
Caser:Personalized Top-N Sequential Recommendation via Convolutional Sequence EmbeddingCaserWSDM'2018[pdf] [code]
SASRec:Self-Attentive Sequential RecommendationICDM'2018[pdf][code]
BERT4Rec:BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from TransformerACM WOODSTOCK’2019[pdf][code]
SR-GNN: Session-based Recommendation with Graph Neural NetworksAAAI'2019[pdf] [code]

Knowledge Graph

TitileBooktitleResources
RippleNet: RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender SystemsCIKM'2018[pdf] [code]

Collaborative Filtering

TitileBooktitleResources
UBCF:GroupLens: an open architecture for collaborative filtering of netnewsCSCW'1994[pdf][code]
IBCF:Item-based collaborative filtering recommendation algorithmsWWW'2001[pdf][code]
SVD:Matrix Factorization Techniques for Recommender SystemsJournal Computer'2009[pdf][code]
SVD++:Factorization meets the neighborhood: a multifaceted collaborative filtering modelKDD'2008[pdf][code]
PMF: Probabilistic Matrix FactorizationNIPS'2007[pdf] [code]
CDL:Collaborative Deep Learning for Recommender SystemsKDD '2015[pdf][code][PPT]
ConvMF:Convolutional Matrix Factorization for Document Context-Aware RecommendationRecSys'2016[pdf][code][zhihu][PPT]
NCF:Neural Collaborative FilteringWWW '17pdfcode

AutoML

TitileBooktitleResources
AutoCTR:Towards Automated Neural Interaction Discovery for Click-Through Rate PredictionKDD'20[pdf]

Other

DropoutNet: Addressing Cold Start in Recommender Systems. [pdf] [code]

Graph Neural Networks

Transfer Learning

Public Datasets

Blogs

Courses & Tutorials

Recommendation Systems Engineer Skill Tree