Home

Awesome

BERT4Rec

Usage

Requirements

Run

For simplicity, here we take ml-1m as an example:

./run_ml-1m.sh

include two part command: generated masked training data

python -u gen_data_fin.py \
    --dataset_name=${dataset_name} \
    --max_seq_length=${max_seq_length} \
    --max_predictions_per_seq=${max_predictions_per_seq} \
    --mask_prob=${mask_prob} \
    --dupe_factor=${dupe_factor} \
    --masked_lm_prob=${masked_lm_prob} \
    --prop_sliding_window=${prop_sliding_window} \
    --signature=${signature} \
    --pool_size=${pool_size} \

train the model

CUDA_VISIBLE_DEVICES=0 python -u run.py \
    --train_input_file=./data/${dataset_name}${signature}.train.tfrecord \
    --test_input_file=./data/${dataset_name}${signature}.test.tfrecord \
    --vocab_filename=./data/${dataset_name}${signature}.vocab \
    --user_history_filename=./data/${dataset_name}${signature}.his \
    --checkpointDir=${CKPT_DIR}/${dataset_name} \
    --signature=${signature}-${dim} \
    --do_train=True \
    --do_eval=True \
    --bert_config_file=./bert_train/bert_config_${dataset_name}_${dim}.json \
    --batch_size=${batch_size} \
    --max_seq_length=${max_seq_length} \
    --max_predictions_per_seq=${max_predictions_per_seq} \
    --num_train_steps=${num_train_steps} \
    --num_warmup_steps=100 \
    --learning_rate=1e-4

hyper-parameter settings

json in bert_train like bert_config_ml-1m_64.json

{
  "attention_probs_dropout_prob": 0.2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.2,
  "hidden_size": 64,
  "initializer_range": 0.02,
  "intermediate_size": 256,
  "max_position_embeddings": 200,
  "num_attention_heads": 2,
  "num_hidden_layers": 2,
  "type_vocab_size": 2,
  "vocab_size": 3420
}

Reference

@inproceedings{Sun:2019:BSR:3357384.3357895,
 author = {Sun, Fei and Liu, Jun and Wu, Jian and Pei, Changhua and Lin, Xiao and Ou, Wenwu and Jiang, Peng},
 title = {BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer},
 booktitle = {Proceedings of the 28th ACM International Conference on Information and Knowledge Management},
 series = {CIKM '19},
 year = {2019},
 isbn = {978-1-4503-6976-3},
 location = {Beijing, China},
 pages = {1441--1450},
 numpages = {10},
 url = {http://doi.acm.org/10.1145/3357384.3357895},
 doi = {10.1145/3357384.3357895},
 acmid = {3357895},
 publisher = {ACM},
 address = {New York, NY, USA}
}