Awesome
<p align="right">English | <a href="./README_CN.md">简体中文</a></p> <p align="center"> <img src="docs/figs/logo.png" align="center" width="32%"> <h3 align="center"><strong>RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions</strong></h3> <p align="center"> <a href="https://ldkong.com/">Lingdong Kong</a><sup>1,2</sup> <a href="https://github.com/Daniel-xsy">Shaoyuan Xie</a><sup>3</sup> <a href="https://hanjianghu.net/">Hanjiang Hu</a><sup>4</sup> <a href="https://ipal.cnrs.fr/lai-xing-ng/">Lai Xing Ng</a><sup>2,5</sup> <a href="https://scholar.google.com/citations?user=9I7uKooAAAAJ">Benoit R. Cottereau</a><sup>2,6</sup> <a href="https://www.comp.nus.edu.sg/cs/people/ooiwt/">Wei Tsang Ooi</a><sup>1,2</sup> <br> <sup>1</sup>National University of Singapore <sup>2</sup>CNRS@CREATE <sup>3</sup>University of California, Irvine <sup>4</sup>Carnegie Mellon University <sup>5</sup>Institute for Infocomm Research, A*STAR <sup>6</sup>CNRS </p> </p> <p align="center"> <a href="https://arxiv.org/abs/2310.15171" target='_blank'> <img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-blue"> </a> <a href="https://ldkong.com/RoboDepth" target='_blank'> <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-lightblue"> </a> <a href="https://huggingface.co/spaces/ldkong/RoboDepth" target='_blank'> <img src="https://img.shields.io/badge/Demo-%F0%9F%8E%AC-blue"> </a> <a href="https://zhuanlan.zhihu.com/p/592479725" target='_blank'> <img src="https://img.shields.io/badge/%E4%B8%AD%E8%AF%91%E7%89%88-%F0%9F%90%BC-pink"> </a> <a href="" target='_blank'> <img src="https://visitor-badge.laobi.icu/badge?page_id=ldkong1205.RoboDepth&left_color=gray&right_color=red"> </a> </p>About
RoboDepth is a comprehensive evaluation benchmark designed for probing the robustness of monocular depth estimation algorithms. It includes 18 common corruption types, ranging from weather and lighting conditions, sensor failure and movement, and noises during data processing.
<p align="center"> <img src="docs/figs/taxonomy.png" align="center" width="95%"> </p>Updates
- [2024.01] - The toolkit tailored for the RoboDrive Challenge has been released. :hammer_and_wrench:
- [2023.12] - We are hosting the RoboDrive Challenge at ICRA 2024. :blue_car:
- [2023.09] - RoboDepth was accepted to NeurIPS 2023 Track on Datasets and Benchmarks! :tada:
- [2023.08] - We support robust depth estimation on real-world scenarios, including
nuScenes
,nuScenes-Night
,Cityscapes
, andFoggy-Cityscapes
. See here for more details. - [2023.08] - We establish the
nuScenes-C
benchmark for robust multi-view depth estimation. See here for more details. - [2023.07] - The technical report of the RoboDepth Challenge is available on arXiv.
- [2023.06] - We have successfully concluded the RoboDepth Challenge! Key statistics of this competition:
226
teams registered at CodaLab,66
of which made a total number of1137
valid submissions. More details are included in these slides. We thank the exceptional support from our participants! :heart: - [2023.06] - We are glad to announce the winning teams of this competition:
- Track 1: :1st_place_medal:
OpenSpaceAI
, :2nd_place_medal:USTC-IAT-United
, :3rd_place_medal:YYQ
. - Track 2: :1st_place_medal:
USTCxNetEaseFuxi
, :2nd_place_medal:OpenSpaceAI
, :3rd_place_medal:GANCV
. - Innovation Prize: :medal_military:
Scent-Depth
, :medal_military:Ensemble
, :medal_military:AIIA-RDepth
.
- Track 1: :1st_place_medal:
- [2023.06] - The video recordings of the RoboDepth Workshop are out. Know more details about how our participants were dedicated to improving the robustness of depth estimation models. :movie_camera:
- [2023.05] - Glad to announce that the RoboDepth Challenge will be sponsored by Baidu Research. :beers:
- [2023.01] - The
NYUDepth2-C
dataset is ready to be downloaded! See here for more details. - [2023.01] - Evaluation server for Track 2 (fully-supervised depth estimation) is available on this page.
- [2023.01] - Evaluation server for Track 1 (self-supervised depth estimation) is available on this page.
- [2022.11] - We are organizing the RoboDepth Challenge at ICRA 2023. Join the challenge today! :raising_hand:
- [2022.11] - The
KITTI-C
dataset is ready to be downloaded! See here for more details.
Outline
- Installation
- Data Preparation
- Getting Started
- Model Zoo
- Benchmark
- Idiosyncrasy Analysis
- Create Corruption Sets
- TODO List
- Citation
- License
- Acknowledgements
Installation
Kindly refer to INSTALL.md for the installation details.
Data Preparation
Our datasets are hosted by OpenDataLab.
<img src="https://raw.githubusercontent.com/opendatalab/dsdl-sdk/2ae5264a7ce1ae6116720478f8fa9e59556bed41/resources/opendatalab.svg" width="32%"/><br> OpenDataLab is a pioneering open data platform for the large AI model era, making datasets accessible. By using OpenDataLab, researchers can obtain free formatted datasets in various fields.
The RoboDepth Benchmark
Kindly refer to DATA_PREPARE.md for the details to prepare the <sup>1</sup>KITTI, <sup>2</sup>KITTI-C, <sup>3</sup>NYUDepth2, <sup>4</sup>NYUDepth2-C, <sup>5</sup>Cityscapes, <sup>6</sup>Foggy-Cityscapes, <sup>7</sup>nuScenes, and <sup>8</sup>nuScenes-C, datasets.
Competition @ ICRA 2023
Kindly refer to this page for the details to prepare the training and evaluation data associated with the 1st RoboDepth Competition at the 40th IEEE Conference on Robotics and Automation (ICRA 2023).
Getting Started
Kindly refer to GET_STARTED.md to learn more usage about this codebase.
Model Zoo
:oncoming_automobile: - Outdoor Depth Estimation
<details open> <summary> <b>Self-Supervised Depth Estimation</b></summary></details> <details open> <summary> <b>Self-Supervised Multi-View Depth Estimation</b></summary>
- MonoDepth2, ICCV 2019. <sup>
[Code]
</sup>- DepthHints, ICCV 2019. <sup>
[Code]
</sup>- MaskOcc, arXiv 2019. <sup>
[Code]
</sup>- DNet, IROS 2020. <sup>
[Code]
</sup>- SGDepth, ECCV 2020. <sup>
[Code]
</sup>- CADepth, 3DV 2021. <sup>
[Code]
</sup>- TC-Depth, 3DV 2021. <sup>
[Code]
</sup>- HR-Depth, AAAI 2021. <sup>
[Code]
</sup>- Insta-DM, AAAI 2021. <sup>
[Code]
</sup>- DIFFNet, BMVC 2021. <sup>
[Code]
</sup>- ManyDepth, CVPR 2021. <sup>
[Code]
</sup>- EPCDepth, ICCV 2021. <sup>
[Code]
</sup>- FSRE-Depth, ICCV 2021. <sup>
[Code]
</sup>- R-MSFM, ICCV 2021. <sup>
[Code]
</sup>- MonoViT, 3DV 2022. <sup>
[Code]
</sup>- DepthFormer, CVPR 2022. <sup>
[Code]
</sup>- DynaDepth, ECCV 2022. <sup>
[Code]
</sup>- DynamicDepth, ECCV 2022. <sup>
[Code]
</sup>- RA-Depth, ECCV 2022. <sup>
[Code]
</sup>- Dyna-DM, arXiv 2022. <sup>
[Code]
</sup>- TriDepth, WACV 2023. <sup>
[Code]
</sup>- FreqAwareDepth, WACV 2023. <sup>
[Code]
</sup>- Lite-Mono, CVPR 2023. <sup>
[Code]
</sup>
</details> <details open> <summary> <b>Fully-Supervised Depth Estimation</b></summary>
- MonoDepth2, ICCV 2019. <sup>
[Code]
</sup>- SurroundDepth, CoRL 2022. <sup>
[Code]
</sup>
</details> <details open> <summary> <b>Semi-Supervised Depth Estimation</b></summary>
</details>
- MaskingDepth, arXiv 2022. <sup>
[Code]
</sup>
:house: - Indoor Depth Estimation
<details open> <summary> <b>Self-Supervised Depth Estimation</b></summary></details> <details open> <summary> <b>Fully-Supervised Depth Estimation</b></summary>
- P<sup>2</sup>Net, ECCV 2020. <sup>
[Code]
</sup>- EPCDepth, ICCV 2021. <sup>
[Code]
</sup>
</details> <details open> <summary> <b>Semi-Supervised Depth Estimation</b></summary>
- BTS, arXiv 2019. <sup>
[Code]
</sup>- AdaBins, CVPR 2021. <sup>
[Code]
</sup>- DPT, ICCV 2021. <sup>
[Code]
</sup>- SimIPU, AAAI 2022. <sup>
[Code]
</sup>- NeWCRFs, CVPR 2022. <sup>
[Code]
</sup>- P3Depth, CVPR 2022. <sup>
[Code]
</sup>- DepthFormer, arXiv 2022. <sup>
[Code]
</sup>- GLPDepth, arXiv 2022. <sup>
[Code]
</sup>- BinsFormer, arXiv 2022. <sup>
[Code]
</sup>
</details>
- MaskingDepth, arXiv 2022. <sup>
[Code]
</sup>
Benchmark
:bar_chart: Metrics: The following metrics are consistently used in our benchmark:
-
Absolute Relative Difference (the lower the better): $\text{Abs Rel} = \frac{1}{|D|}\sum_{pred\in D}\frac{|gt - pred|}{gt}$ .
-
Accuracy (the higher the better): $\delta_t = \frac{1}{|D|}|{\ pred\in D | \max{(\frac{gt}{pred}, \frac{pred}{gt})< 1.25^t}}| \times 100\%$ .
-
Depth Estimation Error (the lower the better):
- $\text{DEE}_1 = \text{Abs Rel} - \delta_1 + 1$ ;
- $\text{DEE}_2 = \frac{\text{Abs Rel} - \delta_1 + 1}{2}$ ;
- $\text{DEE}_3 = \frac{\text{Abs Rel}}{\delta_1}$ .
-
The second Depth Estimation Error term ($\text{DEE}_2$) is adopted as the main indicator for evaluating model performance in our RoboDepth benchmark. The following two metrics are adopted to compare between models' robustness:
- mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline, which is calculated among all corruption types across five severity levels.
- mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across five severity levels.
:gear: Notation: Symbol <sup>:star:</sup> denotes the baseline model adopted in mCE calculation.
KITTI-C
<p align="center"> <img src="docs/figs/metrics_kittic.png" align="center" width="100%"> </p>Model | Modality | mCE (%) | mRR (%) | Clean | Bright | Dark | Fog | Frost | Snow | Contrast | Defocus | Glass | Motion | Zoom | Elastic | Quant | Gaussian | Impulse | Shot | ISO | Pixelate | JPEG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MonoDepth2<sub>R18</sub><sup>:star:</sup> | Mono | 100.00 | 84.46 | 0.119 | 0.130 | 0.280 | 0.155 | 0.277 | 0.511 | 0.187 | 0.244 | 0.242 | 0.216 | 0.201 | 0.129 | 0.193 | 0.384 | 0.389 | 0.340 | 0.388 | 0.145 | 0.196 |
MonoDepth2<sub>R18+nopt</sub> | Mono | 119.75 | 82.50 | 0.144 | 0.183 | 0.343 | 0.311 | 0.312 | 0.399 | 0.416 | 0.254 | 0.232 | 0.199 | 0.207 | 0.148 | 0.212 | 0.441 | 0.452 | 0.402 | 0.453 | 0.153 | 0.171 |
MonoDepth2<sub>R18+HR</sub> | Mono | 106.06 | 82.44 | 0.114 | 0.129 | 0.376 | 0.155 | 0.271 | 0.582 | 0.214 | 0.393 | 0.257 | 0.230 | 0.232 | 0.123 | 0.215 | 0.326 | 0.352 | 0.317 | 0.344 | 0.138 | 0.198 |
MonoDepth2<sub>R50</sub> | Mono | 113.43 | 80.59 | 0.117 | 0.127 | 0.294 | 0.155 | 0.287 | 0.492 | 0.233 | 0.427 | 0.392 | 0.277 | 0.208 | 0.130 | 0.198 | 0.409 | 0.403 | 0.368 | 0.425 | 0.155 | 0.211 |
MaskOcc | Mono | 104.05 | 82.97 | 0.117 | 0.130 | 0.285 | 0.154 | 0.283 | 0.492 | 0.200 | 0.318 | 0.295 | 0.228 | 0.201 | 0.129 | 0.184 | 0.403 | 0.410 | 0.364 | 0.417 | 0.143 | 0.177 |
DNet<sub>R18</sub> | Mono | 104.71 | 83.34 | 0.118 | 0.128 | 0.264 | 0.156 | 0.317 | 0.504 | 0.209 | 0.348 | 0.320 | 0.242 | 0.215 | 0.131 | 0.189 | 0.362 | 0.366 | 0.326 | 0.357 | 0.145 | 0.190 |
CADepth | Mono | 110.11 | 80.07 | 0.108 | 0.121 | 0.300 | 0.142 | 0.324 | 0.529 | 0.193 | 0.356 | 0.347 | 0.285 | 0.208 | 0.121 | 0.192 | 0.423 | 0.433 | 0.383 | 0.448 | 0.144 | 0.195 |
HR-Depth | Mono | 103.73 | 82.93 | 0.112 | 0.121 | 0.289 | 0.151 | 0.279 | 0.481 | 0.213 | 0.356 | 0.300 | 0.263 | 0.224 | 0.124 | 0.187 | 0.363 | 0.373 | 0.336 | 0.374 | 0.135 | 0.176 |
DIFFNet<sub>HRNet</sub> | Mono | 94.96 | 85.41 | 0.102 | 0.111 | 0.222 | 0.131 | 0.199 | 0.352 | 0.161 | 0.513 | 0.330 | 0.280 | 0.197 | 0.114 | 0.165 | 0.292 | 0.266 | 0.255 | 0.270 | 0.135 | 0.202 |
ManyDepth<sub>single</sub> | Mono | 105.41 | 83.11 | 0.123 | 0.135 | 0.274 | 0.169 | 0.288 | 0.479 | 0.227 | 0.254 | 0.279 | 0.211 | 0.194 | 0.134 | 0.189 | 0.430 | 0.450 | 0.387 | 0.452 | 0.147 | 0.182 |
FSRE-Depth | Mono | 99.05 | 83.86 | 0.109 | 0.128 | 0.261 | 0.139 | 0.237 | 0.393 | 0.170 | 0.291 | 0.273 | 0.214 | 0.185 | 0.119 | 0.179 | 0.400 | 0.414 | 0.370 | 0.407 | 0.147 | 0.224 |
MonoViT<sub>MPViT</sub> | Mono | 79.33 | 89.15 | 0.099 | 0.106 | 0.243 | 0.116 | 0.213 | 0.275 | 0.119 | 0.180 | 0.204 | 0.163 | 0.179 | 0.118 | 0.146 | 0.310 | 0.293 | 0.271 | 0.290 | 0.162 | 0.154 |
MonoViT<sub>MPViT+HR</sub> | Mono | 74.95 | 89.72 | 0.094 | 0.102 | 0.238 | 0.114 | 0.225 | 0.269 | 0.117 | 0.145 | 0.171 | 0.145 | 0.184 | 0.108 | 0.145 | 0.302 | 0.277 | 0.259 | 0.285 | 0.135 | 0.148 |
DynaDepth<sub>R18</sub> | Mono | 110.38 | 81.50 | 0.117 | 0.128 | 0.289 | 0.156 | 0.289 | 0.509 | 0.208 | 0.501 | 0.347 | 0.305 | 0.207 | 0.127 | 0.186 | 0.379 | 0.379 | 0.336 | 0.379 | 0.141 | 0.180 |
DynaDepth<sub>R50</sub> | Mono | 119.99 | 77.98 | 0.113 | 0.128 | 0.298 | 0.152 | 0.324 | 0.549 | 0.201 | 0.532 | 0.454 | 0.318 | 0.218 | 0.125 | 0.197 | 0.418 | 0.437 | 0.382 | 0.448 | 0.153 | 0.216 |
RA-Depth<sub>HRNet</sub> | Mono | 112.73 | 78.79 | 0.096 | 0.113 | 0.314 | 0.127 | 0.239 | 0.413 | 0.165 | 0.499 | 0.368 | 0.378 | 0.214 | 0.122 | 0.178 | 0.423 | 0.403 | 0.402 | 0.455 | 0.175 | 0.192 |
TriDepth<sub>single</sub> | Mono | 109.26 | 81.56 | 0.117 | 0.131 | 0.300 | 0.188 | 0.338 | 0.498 | 0.265 | 0.268 | 0.301 | 0.212 | 0.190 | 0.126 | 0.199 | 0.418 | 0.438 | 0.380 | 0.438 | 0.142 | 0.205 |
Lite-Mono<sub>Tiny</sub> | Mono | 92.92 | 86.69 | 0.115 | 0.127 | 0.257 | 0.157 | 0.225 | 0.354 | 0.191 | 0.257 | 0.248 | 0.198 | 0.186 | 0.127 | 0.159 | 0.358 | 0.342 | 0.336 | 0.360 | 0.147 | 0.161 |
Lite-Mono<sub>Tiny+HR</sub> | Mono | 86.71 | 87.63 | 0.106 | 0.119 | 0.227 | 0.139 | 0.282 | 0.370 | 0.166 | 0.216 | 0.201 | 0.190 | 0.202 | 0.116 | 0.146 | 0.320 | 0.291 | 0.286 | 0.312 | 0.148 | 0.167 |
Lite-Mono<sub>Small</sub> | Mono | 100.34 | 84.67 | 0.115 | 0.127 | 0.251 | 0.162 | 0.251 | 0.430 | 0.238 | 0.353 | 0.282 | 0.246 | 0.204 | 0.128 | 0.161 | 0.350 | 0.336 | 0.319 | 0.356 | 0.154 | 0.164 |
Lite-Mono<sub>Small+HR</sub> | Mono | 89.90 | 86.05 | 0.105 | 0.119 | 0.263 | 0.139 | 0.263 | 0.436 | 0.167 | 0.188 | 0.181 | 0.193 | 0.214 | 0.117 | 0.147 | 0.366 | 0.354 | 0.327 | 0.355 | 0.152 | 0.157 |
Lite-Mono<sub>Base</sub> | Mono | 93.16 | 85.99 | 0.110 | 0.119 | 0.259 | 0.144 | 0.245 | 0.384 | 0.177 | 0.224 | 0.237 | 0.221 | 0.196 | 0.129 | 0.175 | 0.361 | 0.340 | 0.334 | 0.363 | 0.151 | 0.165 |
Lite-Mono<sub>Base+HR</sub> | Mono | 89.85 | 85.80 | 0.103 | 0.115 | 0.256 | 0.135 | 0.258 | 0.486 | 0.164 | 0.220 | 0.194 | 0.213 | 0.205 | 0.114 | 0.154 | 0.340 | 0.327 | 0.321 | 0.344 | 0.145 | 0.156 |
Lite-Mono<sub>Large</sub> | Mono | 90.75 | 85.54 | 0.102 | 0.110 | 0.227 | 0.126 | 0.255 | 0.433 | 0.149 | 0.222 | 0.225 | 0.220 | 0.192 | 0.121 | 0.148 | 0.363 | 0.348 | 0.329 | 0.362 | 0.160 | 0.184 |
Lite-Mono<sub>Large+HR</sub> | Mono | 92.01 | 83.90 | 0.096 | 0.112 | 0.241 | 0.122 | 0.280 | 0.482 | 0.141 | 0.193 | 0.194 | 0.213 | 0.222 | 0.108 | 0.140 | 0.403 | 0.404 | 0.365 | 0.407 | 0.139 | 0.182 |
MonoDepth2<sub>R18</sub> | Stereo | 117.69 | 79.05 | 0.123 | 0.133 | 0.348 | 0.161 | 0.305 | 0.515 | 0.234 | 0.390 | 0.332 | 0.264 | 0.209 | 0.135 | 0.200 | 0.492 | 0.509 | 0.463 | 0.493 | 0.144 | 0.194 |
MonoDepth2<sub>R18+nopt</sub> | Stereo | 128.98 | 79.20 | 0.150 | 0.181 | 0.422 | 0.292 | 0.352 | 0.435 | 0.342 | 0.266 | 0.232 | 0.217 | 0.229 | 0.156 | 0.236 | 0.539 | 0.564 | 0.521 | 0.556 | 0.164 | 0.178 |
MonoDepth2<sub>R18+HR</sub> | Stereo | 111.46 | 81.65 | 0.117 | 0.132 | 0.285 | 0.167 | 0.356 | 0.529 | 0.238 | 0.432 | 0.312 | 0.279 | 0.246 | 0.130 | 0.206 | 0.343 | 0.343 | 0.322 | 0.344 | 0.150 | 0.209 |
DepthHints | Stereo | 111.41 | 80.08 | 0.113 | 0.124 | 0.310 | 0.137 | 0.321 | 0.515 | 0.164 | 0.350 | 0.410 | 0.263 | 0.196 | 0.130 | 0.192 | 0.440 | 0.447 | 0.412 | 0.455 | 0.157 | 0.192 |
DepthHints<sub>HR</sub> | Stereo | 112.02 | 79.53 | 0.104 | 0.122 | 0.282 | 0.141 | 0.317 | 0.480 | 0.180 | 0.459 | 0.363 | 0.320 | 0.262 | 0.118 | 0.183 | 0.397 | 0.421 | 0.380 | 0.424 | 0.141 | 0.183 |
DepthHints<sub>HR+nopt</sub> | Stereo | 141.61 | 73.18 | 0.134 | 0.173 | 0.476 | 0.301 | 0.374 | 0.463 | 0.393 | 0.357 | 0.289 | 0.241 | 0.231 | 0.142 | 0.247 | 0.613 | 0.658 | 0.599 | 0.692 | 0.152 | 0.191 |
MonoDepth2<sub>R18</sub> | M+S | 124.31 | 75.36 | 0.116 | 0.127 | 0.404 | 0.150 | 0.295 | 0.536 | 0.199 | 0.447 | 0.346 | 0.283 | 0.204 | 0.128 | 0.203 | 0.577 | 0.605 | 0.561 | 0.629 | 0.136 | 0.179 |
MonoDepth2<sub>R18+nopt</sub> | M+S | 136.25 | 76.72 | 0.146 | 0.193 | 0.460 | 0.328 | 0.421 | 0.428 | 0.440 | 0.228 | 0.221 | 0.216 | 0.230 | 0.153 | 0.229 | 0.570 | 0.596 | 0.549 | 0.606 | 0.161 | 0.177 |
MonoDepth2<sub>R18+HR</sub> | M+S | 106.06 | 82.44 | 0.114 | 0.129 | 0.376 | 0.155 | 0.271 | 0.582 | 0.214 | 0.393 | 0.257 | 0.230 | 0.232 | 0.123 | 0.215 | 0.326 | 0.352 | 0.317 | 0.344 | 0.138 | 0.198 |
CADepth | M+S | 118.29 | 76.68 | 0.110 | 0.123 | 0.357 | 0.137 | 0.311 | 0.556 | 0.169 | 0.338 | 0.412 | 0.260 | 0.193 | 0.126 | 0.186 | 0.546 | 0.559 | 0.524 | 0.582 | 0.145 | 0.192 |
MonoViT<sub>MPViT</sub> | M+S | 75.39 | 90.39 | 0.098 | 0.104 | 0.245 | 0.122 | 0.213 | 0.215 | 0.131 | 0.179 | 0.184 | 0.161 | 0.168 | 0.112 | 0.147 | 0.277 | 0.257 | 0.242 | 0.260 | 0.147 | 0.144 |
MonoViT<sub>MPViT+HR</sub> | M+S | 70.79 | 90.67 | 0.090 | 0.097 | 0.221 | 0.113 | 0.217 | 0.253 | 0.113 | 0.146 | 0.159 | 0.144 | 0.175 | 0.098 | 0.138 | 0.267 | 0.246 | 0.236 | 0.246 | 0.135 | 0.145 |
NYUDepth2-C
<p align="center"> <img src="docs/figs/metrics_nyuc.png" align="center" width="100%"> </p>Model | mCE (%) | mRR (%) | Clean | Bright | Dark | Contrast | Defocus | Glass | Motion | Zoom | Elastic | Quant | Gaussian | Impulse | Shot | ISO | Pixelate | JPEG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BTS<sub>R50</sub> | 122.78 | 80.63 | 0.122 | 0.149 | 0.269 | 0.265 | 0.337 | 0.262 | 0.231 | 0.372 | 0.182 | 0.180 | 0.442 | 0.512 | 0.392 | 0.474 | 0.139 | 0.175 |
AdaBins<sub>R50</sub> | 134.69 | 81.62 | 0.158 | 0.179 | 0.293 | 0.289 | 0.339 | 0.280 | 0.245 | 0.390 | 0.204 | 0.216 | 0.458 | 0.519 | 0.401 | 0.481 | 0.186 | 0.211 |
AdaBins<sub>EfficientB5</sub><sup>:star:</sup> | 100.00 | 85.83 | 0.112 | 0.132 | 0.194 | 0.212 | 0.235 | 0.206 | 0.184 | 0.384 | 0.153 | 0.151 | 0.390 | 0.374 | 0.294 | 0.380 | 0.124 | 0.154 |
DPT<sub>ViT-B</sub> | 83.22 | 95.25 | 0.136 | 0.135 | 0.182 | 0.180 | 0.154 | 0.166 | 0.155 | 0.232 | 0.139 | 0.165 | 0.200 | 0.213 | 0.191 | 0.199 | 0.171 | 0.174 |
SimIPU<sub>R50+no_pt</sub> | 200.17 | 92.52 | 0.372 | 0.388 | 0.427 | 0.448 | 0.416 | 0.401 | 0.400 | 0.433 | 0.381 | 0.391 | 0.465 | 0.471 | 0.450 | 0.461 | 0.375 | 0.378 |
SimIPU<sub>R50+imagenet</sub> | 163.06 | 85.01 | 0.244 | 0.269 | 0.370 | 0.376 | 0.377 | 0.337 | 0.324 | 0.422 | 0.306 | 0.289 | 0.445 | 0.463 | 0.414 | 0.449 | 0.247 | 0.272 |
SimIPU<sub>R50+kitti</sub> | 173.78 | 91.64 | 0.312 | 0.326 | 0.373 | 0.406 | 0.360 | 0.333 | 0.335 | 0.386 | 0.316 | 0.333 | 0.432 | 0.442 | 0.422 | 0.443 | 0.314 | 0.322 |
SimIPU<sub>R50+waymo</sub> | 159.46 | 85.73 | 0.243 | 0.269 | 0.348 | 0.398 | 0.380 | 0.327 | 0.313 | 0.405 | 0.256 | 0.287 | 0.439 | 0.461 | 0.416 | 0.455 | 0.246 | 0.265 |
DepthFormer<sub>SwinT_w7_1k</sub> | 106.34 | 87.25 | 0.125 | 0.147 | 0.279 | 0.235 | 0.220 | 0.260 | 0.191 | 0.300 | 0.175 | 0.192 | 0.294 | 0.321 | 0.289 | 0.305 | 0.161 | 0.179 |
DepthFormer<sub>SwinT_w7_22k</sub> | 63.47 | 94.19 | 0.086 | 0.099 | 0.150 | 0.123 | 0.127 | 0.172 | 0.119 | 0.237 | 0.112 | 0.119 | 0.159 | 0.156 | 0.148 | 0.157 | 0.101 | 0.108 |
Idiosyncrasy Analysis
<p align="center"> <img src="docs/figs/benchmark.png" align="center" width="100%"> </p>For more detailed benchmarking results and to access the pretrained weights used in robustness evaluation, kindly refer to RESULT.md.
Create Corruption Sets
You can manage to create your own "RoboDepth" corruption sets! Follow the instructions listed in CREATE.md.
TODO List
- Initial release. 🚀
- Add scripts for creating common corruptions.
- Add download link of KITTI-C and NYUDepth2-C.
- Add competition data.
- Add benchmarking results.
- Add evaluation scripts on corruption sets.
Citation
If you find this work helpful, please kindly consider citing our papers:
@inproceedings{kong2023robodepth,
title = {RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions},
author = {Kong, Lingdong and Xie, Shaoyuan and Hu, Hanjiang and Ng, Lai Xing and Cottereau, Benoit R. and Ooi, Wei Tsang},
booktitle = {Advances in Neural Information Processing Systems},
year = {2023},
}
@article{kong2023robodepth_challenge,
title = {The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation},
author = {Kong, Lingdong and Niu, Yaru and Xie, Shaoyuan and Hu, Hanjiang and Ng, Lai Xing and Cottereau, Benoit and Zhao, Ding and Zhang, Liangjun and Wang, Hesheng and Ooi, Wei Tsang and Zhu, Ruijie and Song, Ziyang and Liu, Li and Zhang, Tianzhu and Yu, Jun and Jing, Mohan and Li, Pengwei and Qi, Xiaohua and Jin, Cheng and Chen, Yingfeng and Hou, Jie and Zhang, Jie and Kan, Zhen and Lin, Qiang and Peng, Liang and Li, Minglei and Xu, Di and Yang, Changpeng and Yao, Yuanqi and Wu, Gang and Kuai, Jian and Liu, Xianming and Jiang, Junjun and Huang, Jiamian and Li, Baojun and Chen, Jiale and Zhang, Shuang and Ao, Sun and Li, Zhenyu and Chen, Runze and Luo, Haiyong and Zhao, Fang and Yu, Jingze},
journal = {arXiv preprint arXiv:2307.15061},
year = {2023},
}
@misc{kong2023robodepth_benchmark,
title = {The RoboDepth Benchmark for Robust Out-of-Distribution Depth Estimation under Corruptions},
author = {Kong, Lingdong and Xie, Shaoyuan and Hu, Hanjiang and Cottereau, Benoit and Ng, Lai Xing and Ooi, Wei Tsang},
howpublished = {\url{https://github.com/ldkong1205/RoboDepth}},
year = {2023},
}
License
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a> <br /> This work is under the <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
Sponsor
We thank Baidu Research for the support towards the RoboDepth Challenge.
<img src="docs/figs/baidu.png" width="32%"/><br>
Acknowledgements
This project is supported by DesCartes, a CNRS@CREATE program on Intelligent Modeling for Decision-Making in Critical Urban Systems.
<p align="center"> <img src="docs/figs/ack.png" align="center" width="100%"> </p>