Home

Awesome

<br /> <p align="center"> <img src="docs/figs/logo.png" align="center" width="30%"> <h3 align="center"><strong>LaserMix for Semi-Supervised LiDAR Semantic Segmentation</strong></h3> <p align="center"> <a href="https://scholar.google.com/citations?user=-j1j7TkAAAAJ" target='_blank'>Lingdong Kong</a>,&nbsp; <a href="https://scholar.google.com/citations?user=YUKPVCoAAAAJ" target='_blank'>Jiawei Ren</a>,&nbsp; <a href="https://scholar.google.com/citations?user=lSDISOcAAAAJ" target='_blank'>Liang Pan</a>,&nbsp; <a href="https://scholar.google.com/citations?user=lc45xlcAAAAJ" target='_blank'>Ziwei Liu</a> <br> S-Lab, Nanyang Technological University </p> </p> <p align="center"> <a href="https://arxiv.org/abs/2207.00026" target='_blank'> <img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-yellow"> </a> <a href="https://ldkong.com/LaserMix" target='_blank'> <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-lightblue"> </a> <a href="https://youtu.be/Xkwa5-dT0g4" target='_blank'> <img src="https://img.shields.io/badge/Demo-%F0%9F%8E%AC-yellow"> </a> <a href="" target='_blank'> <img src="https://img.shields.io/badge/Poster-%F0%9F%93%83-lightblue"> </a> <a href="https://zhuanlan.zhihu.com/p/528689803" target='_blank'> <img src="https://img.shields.io/badge/%E4%B8%AD%E8%AF%91%E7%89%88-%F0%9F%90%BC-yellow"> </a> <a href="" target='_blank'> <img src="https://visitor-badge.laobi.icu/badge?page_id=ldkong1205.LaserMix&left_color=gray&right_color=lightblue"> </a> </p>

About

<strong>LaserMix</strong> is a semi-supervised learning (SSL) framework designed for LiDAR semantic segmentation. It leverages the strong <strong>spatial prior</strong> of driving scenes to construct <strong>low-variation areas</strong> via <strong>laser beam mixing</strong>, and encourages segmentation models to make <strong>confident</strong> and <strong>consistent</strong> predictions before and after mixing.

<br> <p align="center"> <img src="docs/figs/laser.png" align="center" width="50%"> <br> Fig. Illustration for laser beam partition based on inclination &phi;. </p> <br>

Visit our <a href="https://ldkong.com/LaserMix" target='_blank'>project page</a> to explore more details. :red_car:

Updates

Outline

Installation

Please refer to INSTALL.md for the installation details.

Data Preparation

Please refer to DATA_PREPARE.md for the details to prepare the <sup>1</sup>nuScenes, <sup>2</sup>SemanticKITTI, and <sup>3</sup>ScribbleKITTI datasets.

Getting Started

Please refer to GET_STARTED.md to learn more usage about this codebase.

Video Demo

Demo 1Demo 2Demo 3
<img width="100%" src="docs/figs/demo1.png"><img width="100%" src="docs/figs/demo2.png"><img width="100%" src="docs/figs/demo3.png">
Link <sup>:arrow_heading_up:</sup>Link <sup>:arrow_heading_up:</sup>Link <sup>:arrow_heading_up:</sup>

Main Result

Framework Overview

<p align="center"> <img src="docs/figs/framework.png" align="center" width="99.9%"> </p>

Range View

<table> <tr> <th rowspan="2">Method</th> <th colspan="4">nuScenes</th> <th colspan="4">SemanticKITTI</th> <th colspan="4">ScribbleKITTI</th> </tr> <tr> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> </tr> <tr> <td>Sup.-only</td> <td>38.3</td> <td>57.5</td> <td>62.7</td> <td>67.6</td> <td>36.2</td> <td>52.2</td> <td>55.9</td> <td>57.2</td> <td>33.1</td> <td>47.7</td> <td>49.9</td> <td>52.5</td> </tr> <tr> <td><strong>LaserMix</strong></td> <td>49.5</td><td>68.2</td><td>70.6</td><td>73.0</td> <td>43.4</td><td>58.8</td><td>59.4</td><td>61.4</td> <td>38.3</td><td>54.4</td><td>55.6</td><td>58.7</td> </tr> <tr> <td><i>improv.</i> &#8593</td> <td><sup>+</sup>11.2</td> <td><sup>+</sup>10.7</td> <td><sup>+</sup>7.9</td> <td><sup>+</sup>5.4</td> <td><sup>+</sup>7.2</td> <td><sup>+</sup>6.6</td> <td><sup>+</sup>3.5</td> <td><sup>+</sup>4.2</td> <td><sup>+</sup>5.2</td> <td><sup>+</sup>6.7</td> <td><sup>+</sup>5.7</td> <td><sup>+</sup>6.2</td> </tr> <tr> <td><strong>LaserMix++</strong></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td><i>improv.</i> &#8593</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </table>

Voxel

<table> <tr> <th rowspan="2">Method</th> <th colspan="4">nuScenes</th> <th colspan="4">SemanticKITTI</th> <th colspan="4">ScribbleKITTI</th> </tr> <tr> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> </tr> <tr> <td>Sup.-only</td> <td>50.9</td> <td>65.9</td> <td>66.6</td> <td>71.2</td> <td>45.4</td> <td>56.1</td> <td>57.8</td> <td>58.7</td> <td>39.2</td> <td>48.0</td> <td>52.1</td> <td>53.8</td> </tr> <tr> <td><strong>LaserMix</strong></td> <td>55.3</td> <td>69.9</td> <td>71.8</td> <td>73.2</td> <td>50.6</td> <td>60.0</td> <td>61.9</td> <td>62.3</td> <td>44.2</td> <td>53.7</td> <td>55.1</td> <td>56.8</td> </tr> <tr> <td><i>improv.</i> &#8593</td> <td><sup>+</sup><small>4.4</small></td> <td><sup>+</sup><small>4.0</small></td> <td><sup>+</sup><small>5.2</small></td> <td><sup>+</sup><small>2.0</small></td> <td><sup>+</sup><small>5.2</small></td> <td><sup>+</sup><small>3.9</small></td> <td><sup>+</sup><small>4.1</small></td> <td><sup>+</sup><small>3.6</small></td> <td><sup>+</sup><small>5.0</small></td> <td><sup>+</sup><small>5.7</small></td> <td><sup>+</sup><small>3.0</small></td> <td><sup>+</sup><small>3.0</small></td> </tr> <tr> <td><strong>LaserMix++</strong></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td><i>improv.</i> &#8593</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </table>

Ablation Studies

<p align="center"> <img src="docs/figs/ablation.png" align="center" width="99.9%"> </p>

Qualitative Examples

qualitative

Checkpoints & More Results

For more experimental results and pretrained weights, please refer to RESULT.md.

TODO List

Citation

If you find this work helpful, please kindly consider citing our paper:

@inproceedings{kong2023lasermix,
  title = {LaserMix for Semi-Supervised LiDAR Semantic Segmentation},
  author = {Kong, Lingdong and Ren, Jiawei and Pan, Liang and Liu, Ziwei},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages = {21705--21715},
  year = {2023},
}

License

<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a> <br /> This work is under the <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.

Acknowledgement

This work is developed based on the MMDetection3D codebase.

<img src="https://github.com/open-mmlab/mmdetection3d/blob/main/resources/mmdet3d-logo.png" width="30%"/><br> MMDetection3D is an open-source toolbox based on PyTorch, towards the next-generation platform for general 3D perception. It is a part of the OpenMMLab project developed by MMLab.

We acknowledge the use of the following public resources during the course of this work: <sup>1</sup>nuScenes, <sup>2</sup>nuScenes-devkit, <sup>3</sup>SemanticKITTI, <sup>4</sup>SemanticKITTI-API, <sup>5</sup>ScribbleKITTI, <sup>6</sup>FIDNet, <sup>7</sup>CENet, <sup>8</sup>SPVNAS, <sup>9</sup>Cylinder3D, <sup>10</sup>TorchSemiSeg, <sup>11</sup>MixUp, <sup>12</sup>CutMix, <sup>13</sup>CutMix-Seg, <sup>14</sup>CBST, <sup>15</sup>MeanTeacher, and <sup>16</sup>Cityscapes.

We would like to thank <a href="https://hongfz16.github.io/" target='_blank'>Fangzhou Hong</a> for the insightful discussions and feedback. ❤️