Awesome
<br /> <p align="center"> <img src="docs/figs/logo.png" align="center" width="30%"> <h3 align="center"><strong>LaserMix for Semi-Supervised LiDAR Semantic Segmentation</strong></h3> <p align="center"> <a href="https://scholar.google.com/citations?user=-j1j7TkAAAAJ" target='_blank'>Lingdong Kong</a>, <a href="https://scholar.google.com/citations?user=YUKPVCoAAAAJ" target='_blank'>Jiawei Ren</a>, <a href="https://scholar.google.com/citations?user=lSDISOcAAAAJ" target='_blank'>Liang Pan</a>, <a href="https://scholar.google.com/citations?user=lc45xlcAAAAJ" target='_blank'>Ziwei Liu</a> <br> S-Lab, Nanyang Technological University </p> </p> <p align="center"> <a href="https://arxiv.org/abs/2207.00026" target='_blank'> <img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-yellow"> </a> <a href="https://ldkong.com/LaserMix" target='_blank'> <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-lightblue"> </a> <a href="https://youtu.be/Xkwa5-dT0g4" target='_blank'> <img src="https://img.shields.io/badge/Demo-%F0%9F%8E%AC-yellow"> </a> <a href="" target='_blank'> <img src="https://img.shields.io/badge/Poster-%F0%9F%93%83-lightblue"> </a> <a href="https://zhuanlan.zhihu.com/p/528689803" target='_blank'> <img src="https://img.shields.io/badge/%E4%B8%AD%E8%AF%91%E7%89%88-%F0%9F%90%BC-yellow"> </a> <a href="" target='_blank'> <img src="https://visitor-badge.laobi.icu/badge?page_id=ldkong1205.LaserMix&left_color=gray&right_color=lightblue"> </a> </p>About
<strong>LaserMix</strong> is a semi-supervised learning (SSL) framework designed for LiDAR semantic segmentation. It leverages the strong <strong>spatial prior</strong> of driving scenes to construct <strong>low-variation areas</strong> via <strong>laser beam mixing</strong>, and encourages segmentation models to make <strong>confident</strong> and <strong>consistent</strong> predictions before and after mixing.
<br> <p align="center"> <img src="docs/figs/laser.png" align="center" width="50%"> <br> Fig. Illustration for laser beam partition based on inclination φ. </p> <br>Visit our <a href="https://ldkong.com/LaserMix" target='_blank'>project page</a> to explore more details. :red_car:
Updates
- [2024.05] - Our improved framework, LaserMix++ :rocket:, is avaliable on arXiv.
- [2024.01] - The toolkit tailored for The RoboDrive Challenge has been released. :hammer_and_wrench:
- [2023.12] - We are hosting The RoboDrive Challenge at ICRA 2024. :blue_car:
- [2023.12] - Introducing FRNet, an efficient and effective real-time LiDAR segmentation model that achieves promising semi-supervised learning results on
SemanticKITTI
andnuScenes
. Code and checkpoints are available for downloading. - [2023.03] - Intend to test the robustness of your LiDAR semantic segmentation models? Check our recent work, :robot: Robo3D, a comprehensive suite that enables OoD robustness evaluation of 3D segmentors on our newly established datasets:
SemanticKITTI-C
,nuScenes-C
, andWOD-C
. - [2023.03] - LaserMix was selected as a :sparkles: highlight :sparkles: at CVPR 2023 (top 10% of accepted papers).
- [2023.02] - LaserMix was accepted to CVPR 2023! :tada:
- [2023.02] - LaserMix has been integrated into the MMDetection3D codebase! Check this PR in the
dev-1.x
branch to know more details. :beers: - [2023.01] - As suggested, we will establish a sequential track taking into account the LiDAR data collection nature in our semi-supervised LiDAR semantic segmentation benchmark. The results will be gradually updated in RESULT.md.
- [2022.12] - We support a wider range of LiDAR segmentation backbones, including RangeNet++, SalsaNext, FIDNet, CENet, MinkowskiUNet, Cylinder3D, and SPVCNN, under both fully- and semi-supervised settings. The checkpoints will be available soon!
- [2022.12] - The derivation of spatial-prior-based SSL is available here. Take a look! :memo:
- [2022.08] - LaserMix achieves 1st place among the semi-supervised semantic segmentation leaderboards of nuScenes, SemanticKITTI, and ScribbleKITTI, based on Paper-with-Code. :bar_chart:
- [2022.08] - We provide a video demo for visual comparisons on the SemanticKITTI val set. Take a look!
- [2022.07] - Our paper is available on arXiv, click <a href="https://arxiv.org/abs/2207.00026" target='_blank'>here</a> to check it out. Code will be available soon!
Outline
- Installation
- Data Preparation
- Getting Started
- Video Demo
- Main Results
- TODO List
- License
- Acknowledgement
- Citation
Installation
Please refer to INSTALL.md for the installation details.
Data Preparation
Please refer to DATA_PREPARE.md for the details to prepare the <sup>1</sup>nuScenes, <sup>2</sup>SemanticKITTI, and <sup>3</sup>ScribbleKITTI datasets.
Getting Started
Please refer to GET_STARTED.md to learn more usage about this codebase.
Video Demo
Demo 1 | Demo 2 | Demo 3 |
---|---|---|
<img width="100%" src="docs/figs/demo1.png"> | <img width="100%" src="docs/figs/demo2.png"> | <img width="100%" src="docs/figs/demo3.png"> |
Link <sup>:arrow_heading_up:</sup> | Link <sup>:arrow_heading_up:</sup> | Link <sup>:arrow_heading_up:</sup> |
Main Result
Framework Overview
<p align="center"> <img src="docs/figs/framework.png" align="center" width="99.9%"> </p>Range View
<table> <tr> <th rowspan="2">Method</th> <th colspan="4">nuScenes</th> <th colspan="4">SemanticKITTI</th> <th colspan="4">ScribbleKITTI</th> </tr> <tr> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> </tr> <tr> <td>Sup.-only</td> <td>38.3</td> <td>57.5</td> <td>62.7</td> <td>67.6</td> <td>36.2</td> <td>52.2</td> <td>55.9</td> <td>57.2</td> <td>33.1</td> <td>47.7</td> <td>49.9</td> <td>52.5</td> </tr> <tr> <td><strong>LaserMix</strong></td> <td>49.5</td><td>68.2</td><td>70.6</td><td>73.0</td> <td>43.4</td><td>58.8</td><td>59.4</td><td>61.4</td> <td>38.3</td><td>54.4</td><td>55.6</td><td>58.7</td> </tr> <tr> <td><i>improv.</i> ↑</td> <td><sup>+</sup>11.2</td> <td><sup>+</sup>10.7</td> <td><sup>+</sup>7.9</td> <td><sup>+</sup>5.4</td> <td><sup>+</sup>7.2</td> <td><sup>+</sup>6.6</td> <td><sup>+</sup>3.5</td> <td><sup>+</sup>4.2</td> <td><sup>+</sup>5.2</td> <td><sup>+</sup>6.7</td> <td><sup>+</sup>5.7</td> <td><sup>+</sup>6.2</td> </tr> <tr> <td><strong>LaserMix++</strong></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td><i>improv.</i> ↑</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </table>Voxel
<table> <tr> <th rowspan="2">Method</th> <th colspan="4">nuScenes</th> <th colspan="4">SemanticKITTI</th> <th colspan="4">ScribbleKITTI</th> </tr> <tr> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> <td>1%</td> <td>10%</td> <td>20%</td> <td>50%</td> </tr> <tr> <td>Sup.-only</td> <td>50.9</td> <td>65.9</td> <td>66.6</td> <td>71.2</td> <td>45.4</td> <td>56.1</td> <td>57.8</td> <td>58.7</td> <td>39.2</td> <td>48.0</td> <td>52.1</td> <td>53.8</td> </tr> <tr> <td><strong>LaserMix</strong></td> <td>55.3</td> <td>69.9</td> <td>71.8</td> <td>73.2</td> <td>50.6</td> <td>60.0</td> <td>61.9</td> <td>62.3</td> <td>44.2</td> <td>53.7</td> <td>55.1</td> <td>56.8</td> </tr> <tr> <td><i>improv.</i> ↑</td> <td><sup>+</sup><small>4.4</small></td> <td><sup>+</sup><small>4.0</small></td> <td><sup>+</sup><small>5.2</small></td> <td><sup>+</sup><small>2.0</small></td> <td><sup>+</sup><small>5.2</small></td> <td><sup>+</sup><small>3.9</small></td> <td><sup>+</sup><small>4.1</small></td> <td><sup>+</sup><small>3.6</small></td> <td><sup>+</sup><small>5.0</small></td> <td><sup>+</sup><small>5.7</small></td> <td><sup>+</sup><small>3.0</small></td> <td><sup>+</sup><small>3.0</small></td> </tr> <tr> <td><strong>LaserMix++</strong></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td><i>improv.</i> ↑</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </table>Ablation Studies
<p align="center"> <img src="docs/figs/ablation.png" align="center" width="99.9%"> </p>Qualitative Examples
Checkpoints & More Results
For more experimental results and pretrained weights, please refer to RESULT.md.
TODO List
- Initial release. :rocket:
- Add license. See here for more details.
- Add video demos :movie_camera:
- Add installation details.
- Add data preparation details.
- Add evaluation details.
- Add training details.
Citation
If you find this work helpful, please kindly consider citing our paper:
@inproceedings{kong2023lasermix,
title = {LaserMix for Semi-Supervised LiDAR Semantic Segmentation},
author = {Kong, Lingdong and Ren, Jiawei and Pan, Liang and Liu, Ziwei},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages = {21705--21715},
year = {2023},
}
License
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a> <br /> This work is under the <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
Acknowledgement
This work is developed based on the MMDetection3D codebase.
<img src="https://github.com/open-mmlab/mmdetection3d/blob/main/resources/mmdet3d-logo.png" width="30%"/><br> MMDetection3D is an open-source toolbox based on PyTorch, towards the next-generation platform for general 3D perception. It is a part of the OpenMMLab project developed by MMLab.
We acknowledge the use of the following public resources during the course of this work: <sup>1</sup>nuScenes, <sup>2</sup>nuScenes-devkit, <sup>3</sup>SemanticKITTI, <sup>4</sup>SemanticKITTI-API, <sup>5</sup>ScribbleKITTI, <sup>6</sup>FIDNet, <sup>7</sup>CENet, <sup>8</sup>SPVNAS, <sup>9</sup>Cylinder3D, <sup>10</sup>TorchSemiSeg, <sup>11</sup>MixUp, <sup>12</sup>CutMix, <sup>13</sup>CutMix-Seg, <sup>14</sup>CBST, <sup>15</sup>MeanTeacher, and <sup>16</sup>Cityscapes.
We would like to thank <a href="https://hongfz16.github.io/" target='_blank'>Fangzhou Hong</a> for the insightful discussions and feedback. ❤️