Home

Awesome

<div align="center">

AutoRound

<h3> Advanced Quantization Algorithm for LLMs</h3>

python version license

<div align="left">

AutoRound is an advanced quantization algorithm for low-bits LLM inference. It's tailored for a wide range of models. AutoRound adopts sign gradient descent to fine-tune rounding values and minmax values of weights in just 200 steps, which competes impressively against recent methods without introducing any additional inference overhead and keeping low tuning cost. The below image presents an overview of AutoRound. Check out our paper on arxiv for more details and visit low_bit_open_llm_leaderboard for more accuracy data and recipes across various models.

<div align="center">

<div align="left">

What's New

Installation

Build from Source

pip install -vvv --no-build-isolation -e .

Install from pypi

pip install auto-round

Model Quantization

Basic Usage ((Gaudi2/CPU/GPU))

A user guide detailing the full list of supported arguments is provided by calling auto-round -h on the terminal. Alternatively, you can use auto_round instead of auto-round.

CUDA_VISIBLE_DEVICES=0 auto-round \
    --model facebook/opt-125m \
    --bits 4 \
    --group_size 128 \
    --format auto_round \
    --disable_eval \
    --output_dir ./tmp_autoround

We provide two recipes for best accuracy and fast running speed with low memory. Details as below.

<details> <summary>Other Recipes</summary>
## best accuracy, 3X slower, low_gpu_mem_usage could save ~20G but ~30% slower
CUDA_VISIBLE_DEVICES=0 auto-round \
  --model facebook/opt-125m \
  --bits 4 \
  --group_size 128 \
  --nsamples 512 \
  --iters 1000 \
  --low_gpu_mem_usage \
  --disable_eval 
## fast and low memory, 2-3X speedup, slight accuracy drop at W4G128
CUDA_VISIBLE_DEVICES=0 auto-round \
  --model facebook/opt-125m \
  --bits 4 \
  --group_size 128 \
  --nsamples 128 \
  --iters 200 \
  --seqlen 512 \
  --batch_size 4 \
  --disable_eval 
</details>

Formats

AutoRound Format: This format is well-suited for CPU, HPU devices, 2 bits, as well as mixed-precision inference. [2,4] bits are supported. It also benefits from the Marlin kernel, which can boost inference performance notably. However, it has not yet gained widespread community adoption.

AutoGPTQ Format: This format is well-suited for symmetric quantization on CUDA devices and is widely adopted by the community, [2,3,4,8] bits are supported. It also benefits from the Marlin kernel, which can boost inference performance notably. However, the asymmetric kernel has issues that can cause considerable accuracy drops, particularly at 2-bit quantization and small models. Additionally, symmetric quantization tends to perform poorly at 2-bit precision.

AutoAWQ Format: This format is well-suited for asymmetric 4-bit quantization on CUDA devices and is widely adopted within the community, only 4-bits quantization is supported. It features specialized layer fusion tailored for Llama models.

API Usage (Gaudi2/CPU/GPU)

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "facebook/opt-125m"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

from auto_round import AutoRound

bits, group_size, sym = 4, 128, True
autoround = AutoRound(model, tokenizer, bits=bits, group_size=group_size, sym=sym)

## the best accuracy, 3X slower, low_gpu_mem_usage could save ~20G but ~30% slower
# autoround = AutoRound(model, tokenizer, nsamples=512, iters=1000, low_gpu_mem_usage=True, bits=bits, group_size=group_size, sym=sym)

## fast and low memory, 2-3X speedup, slight accuracy drop at W4G128
# autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym )

autoround.quantize()
output_dir = "./tmp_autoround"
## format= 'auto_round'(default in version>0.3.0), 'auto_gptq', 'auto_awq'
autoround.save_quantized(output_dir, format='auto_round', inplace=True) 
<details> <summary>Detailed Hyperparameters</summary> </details>

Model Inference

Please run the quantization code first

AutoRound format

CPU: pip install intel-extension-for-transformers, auto_round version >0.3.1

HPU: docker image with Gaudi Software Stack is recommended. More details can be found in Gaudi Guide.

CUDA: no extra operations for sym quantization, for asym quantization, need to install auto-round from source

CPU/HPU/CUDA

from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_round import AutoRoundConfig

backend = "auto"  ##cpu, hpu, cuda, cuda:marlin(supported in auto_round>0.3.1 'pip install -v gptqmodel --no-build-isolation')
quantization_config = AutoRoundConfig(
    backend=backend
)
quantized_model_path = "./tmp_autoround"
model = AutoModelForCausalLM.from_pretrained(quantized_model_path,
                                             device_map=backend.split(':')[0], quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(quantized_model_path)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0]))
<br> <details> <summary>Evaluation</summary>
auto-round --model saved_quantized_model \
    --eval \
    --task lambada_openai \
    --eval_bs 1
</details>

AutoGPTQ/AutoAWQ format

from transformers import AutoModelForCausalLM, AutoTokenizer

quantized_model_path = "./tmp_autoround"
model = AutoModelForCausalLM.from_pretrained(quantized_model_path,
                                             device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(quantized_model_path)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0]))

Support List

AutoRound supports basically all the major large language models.

Please note that an asterisk (*) indicates third-party quantized models, which may lack accuracy data and use a different recipe. We greatly appreciate their efforts and encourage more users to share their models, as we cannot release most of the models ourselves.

ModelSupported
meta-llama/Meta-Llama-3.1-70B-Instructrecipe
meta-llama/Meta-Llama-3.1-8B-Instructmodel-kaitchup-autogptq-int4*, model-kaitchup-autogptq-sym-int4*, recipe
meta-llama/Meta-Llama-3.1-8Bmodel-kaitchup-autogptq-sym-int4*
Qwen/Qwen-VLaccuracy, recipe
Qwen/Qwen2-7Bmodel-autoround-sym-int4, model-autogptq-sym-int4
Qwen/Qwen2-57B-A14B-Instructmodel-autoround-sym-int4,model-autogptq-sym-int4
01-ai/Yi-1.5-9Bmodel-LnL-AI-autogptq-int4*
01-ai/Yi-1.5-9B-Chatmodel-LnL-AI-autogptq-int4*
Intel/neural-chat-7b-v3-3model-autogptq-int4
Intel/neural-chat-7b-v3-1model-autogptq-int4
TinyLlama-1.1B-intermediatemodel-LnL-AI-autogptq-int4*
mistralai/Mistral-7B-v0.1model-autogptq-lmhead-int4, model-autogptq-int4
google/gemma-2bmodel-autogptq-int4
tiiuae/falcon-7bmodel-autogptq-int4-G64
sapienzanlp/modello-italia-9bmodel-fbaldassarri-autogptq-int4*
microsoft/phi-2model-autoround-sym-int4 model-autogptq-sym-int4
microsoft/Phi-3.5-mini-instructmodel-kaitchup-autogptq-sym-int4*
microsoft/Phi-3-vision-128k-instructrecipe
mistralai/Mistral-7B-Instruct-v0.2accuracy, recipe, example
mistralai/Mixtral-8x7B-Instruct-v0.1accuracy, recipe, example
mistralai/Mixtral-8x7B-v0.1accuracy, recipe, example
meta-llama/Meta-Llama-3-8B-Instructaccuracy, recipe, example
google/gemma-7baccuracy, recipe, example
meta-llama/Llama-2-7b-chat-hfaccuracy, recipe, example
Qwen/Qwen1.5-7B-Chataccuracy, sym recipe, asym recipe , example
baichuan-inc/Baichuan2-7B-Chataccuracy, recipe, example
01-ai/Yi-6B-Chataccuracy, recipe, example
facebook/opt-2.7baccuracy, recipe, example
bigscience/bloom-3baccuracy, recipe, example
EleutherAI/gpt-j-6baccuracy, recipe, example

Integration

AutoRound has been integrated into multiple repositories.

Intel Neural Compressor

ModelCloud/GPTQModel

pytorch/ao

Reference

If you find AutoRound useful for your research, please cite our paper:

@article{cheng2023optimize,
  title={Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs},
  author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi},
  journal={arXiv preprint arXiv:2309.05516},
  year={2023}
}