Home

Awesome

<h1 align="center">GPTQModel</h1> <p align="center">Production ready LLM model compression/quantization toolkit with accelerated inference support for both cpu/gpu via HF, vLLM, and SGLang.</p> <p align="center"> <a href="https://github.com/ModelCloud/GPTQModel/releases" style="text-decoration:none;"><img alt="GitHub release" src="https://img.shields.io/github/release/ModelCloud/GPTQModel.svg"></a> <a href="https://pypi.org/project/gptqmodel/" style="text-decoration:none;"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gptqmodel"></a> <a href="https://pepy.tech/projects/gptqmodel" style="text-decoration:none;"><img src="https://static.pepy.tech/badge/gptqmodel" alt="PyPI Downloads"></a> <a href="https://github.com/ModelCloud/GPTQModel/blob/main/LICENSE"><img src="https://img.shields.io/pypi/l/gptqmodel"></a> </p>

News

<details> <summary>Archived News:</summary> * 09/26/2024 ✨ [1.0.4](https://github.com/ModelCloud/GPTQModel/releases/tag/v1.0.4) Integrated Liger Kernel support for ~1/2 memory reduction on some models during quantization. Added control toggle disable parallel packing. * 09/18/2024 ✨ [1.0.3](https://github.com/ModelCloud/GPTQModel/releases/tag/v1.0.3) Added Microsoft GRIN-MoE and MiniCPM3 support. * 08/16/2024 ✨ [1.0.2](https://github.com/ModelCloud/GPTQModel/releases/tag/v1.0.2) Support Intel/AutoRound v0.3, pre-built whl packages, and PyPI release. * 08/14/2024 ✨ [1.0.0](https://github.com/ModelCloud/GPTQModel/releases/tag/v1.0.0) 40% faster `packing`, Fixed Python 3.9 compat, added `lm_eval` api. * 08/10/2024 🚀 [0.9.11](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.11) Added LG EXAONE 3.0 model support. New `dynamic` per layer/module flexible quantization where each layer/module may have different bits/params. Added proper sharding support to `backend.BITBLAS`. Auto-heal quantization errors due to small damp values. * 07/31/2024 🚀 [0.9.10](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.10) Ported vllm/nm `gptq_marlin` inference kernel with expanded bits (8bits), group_size (64,32), and desc_act support for all GPTQ models with `FORMAT.GPTQ`. Auto calculate auto-round nsamples/seglen parameters based on calibration dataset. Fixed save_quantized() called on pre-quantized models with non-supported backends. HF transformers depend updated to ensure Llama 3.1 fixes are correctly applied to both quant and inference. * 07/25/2024 🚀 [0.9.9](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.9): Added Llama-3.1 support, Gemma2 27B quant inference support via vLLM, auto pad_token normalization, fixed auto-round quant compat for vLLM/SGLang, and more. * 07/13/2024 🚀 [0.9.8](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.8): Run quantized models directly using GPTQModel using fast `vLLM` or `SGLang` backend! Both vLLM and SGLang are optimized for dyanamic batching inference for maximum `TPS` (check usage under examples). Marlin backend also got full end-to-end in/out features padding to enhance current/future model compatibility. * 07/08/2024 🚀 [0.9.7](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.7): InternLM 2.5 model support added. * 07/08/2024 🚀 [0.9.6](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.6): [Intel/AutoRound](https://github.com/intel/auto-round) QUANT_METHOD support added for a potentially higher quality quantization with `lm_head` module quantization support for even more vram reduction: format export to `FORMAT.GPTQ` for max inference compatibility. * 07/05/2024 🚀 [0.9.5](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.5): Cuda kernels have been fully deprecated in favor of Exllama(v1/v2)/Marlin/Triton. * 07/03/2024 🚀 [0.9.4](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.4): HF Transformers integration added and bug fixed Gemma 2 support. * 07/02/2024 🚀 [0.9.3](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.3): Added Gemma 2 support, faster PPL calculations on gpu, and more code/arg refractor. * 06/30/2024 🚀 [0.9.2](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.2): Added auto-padding of model in/out-features for exllama and exllama v2. Fixed quantization of OPT and DeepSeek V2-Lite models. Fixed inference for DeepSeek V2-Lite. * 06/29/2024 🚀 [0.9.1](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.1): With 3 new models (DeepSeek-V2, DeepSeek-V2-Lite, DBRX Converted), BITBLAS new format/kernel, proper batching of calibration dataset resulting > 50% quantization speedup, security hash check of loaded model weights, tons of refractor/usability improvements, bugs fixes and much more. * 06/20/2924 ✨ [0.9.0](https://github.com/ModelCloud/GPTQModel/releases/tag/v0.9.0): Thanks for all the work from ModelCloud team and the opensource ML community for their contributions! </details>

Why should you use GPTQModel?

GPTQModel started out as a major refractor (fork) of AutoGTQP but has now morphed into a full-stand-in replacement with cleaner api, up-to-date model support, faster inference, faster quantization, higher quality quants and a pledge that ModelCloud, together with the open-source ML community, will take every effort to bring the library up-to-date with latest advancements and model support.

Why GPTQ specifically and not the dozens of other low-bit quantizers?

Public tests/papers and ModelCloud's internal tests have shown that GPTQ is on-par and/or exceeds other 4bit quantization methods in terms of both quality recovery and production level inference speed in both token latency and rps. GPTQ has currently the optimal blend of quality and inference speed you would want to use in a real-world production system.

Features

Quality: GPTQModel 4Bit Quantized models can match and sometimes exceed BF16:

🤗 ModelCloud quantized ultra-high recovery vortex-series models on HF

image

Model Support: 🚀 (Added by GPTQModel)

Model
Baichuan✅Falon✅Llama 3.2 Vision🚀Qwen✅
Bloom✅Gemma 2🚀LongLLaMA✅Qwen2MoE🚀
ChatGLM🚀GPTBigCod✅MiniCPM3🚀RefinedWeb✅
CodeGen✅GPTNeoX✅Mistral✅StableLM✅
Cohere✅GPT-2✅Mixtral✅StarCoder2✅
DBRX Converted🚀GPT-J✅MobileLLM🚀XVERSE✅
Deci✅Granite🚀MOSS✅Yi✅
DeepSeek-V2🚀GRIN-MoE🚀MPT✅
DeepSeek-V2-Lite🚀InternLM 1/2.5🚀OPT✅
EXAONE 3.0🚀Llama 1/2/3✅Phi/Phi-3🚀

Platform Requirements

GPTQModel is validated for Linux x86_64 with Nvidia GPUs. Windows WSL2 may work but un-tested.

Install

PIP/UV

# You can install optional modules like autoround, ipex, vllm, sglang, bitblas, and ipex.
# Example: pip install -v --no-build-isolation gptqmodel[vllm,sglang,bitblas,ipex,auto_round]
pip install -v gptqmodel --no-build-isolation
uv pip install -v gptqmodel --no-build-isolation

Install from source

# clone repo
git clone https://github.com/ModelCloud/GPTQModel.git && cd GPTQModel

# pip: compile and install
# You can install optional modules like autoround, ipex, vllm, sglang, bitblas, and ipex.
# Example: pip install -v --no-build-isolation gptqmodel[vllm,sglang,bitblas,ipex,auto_round]
pip install -v . --no-build-isolation

Quantization and Inference

Below is a basic sample using GPTQModel to quantize a llm model and perform post-quantization inference:

from datasets import load_dataset
from transformers import AutoTokenizer
from gptqmodel import GPTQModel, QuantizeConfig

model_id = "meta-llama/Llama-3.2-1B-Instruct"
quant_path = "Llama-3.2-1B-Instruct-gptqmodel-4bit"

tokenizer = AutoTokenizer.from_pretrained(model_id)

calibration_dataset = [
  tokenizer(example["text"])
  for example in load_dataset(
    "allenai/c4",
    data_files="en/c4-train.00001-of-01024.json.gz",
    split="train"
  ).select(range(1024))
]

quant_config = QuantizeConfig(bits=4, group_size=128)

model = GPTQModel.load(model_id, quant_config)

model.quantize(calibration_dataset)

model.save(quant_path)

model = GPTQModel.load(quant_path)

result = model.generate(
  **tokenizer(
      "Uncovering deep insights begins with", return_tensors="pt"
  ).to(model.device)
)[0]

For more advanced features of model quantization, please reference to this script

How to Add Support for a New Model

Read the gptqmodel/models/llama.py code which explains in detail via comments how the model support is defined. Use it as guide to PR for to new models. Most models follow the same pattern.

Evaluation and Quality Benchmarks

GPTQModel inference is integrated into lm-evaluation-hardness and we highly recommend avoid using PPL and use lm-eval to validate post-quantization model quality.

# currently gptqmodel is merged into lm-eval main but not yet released on pypi
pip install lm-eval[gptqmodel]

Which kernel is used by default?

Citation

@misc{gptqmodel,
    author = {ModelCloud.ai},
    title = {GPTQModel},
    year = {2024},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/modelcloud/gptqmodel}},
}

@article{frantar-gptq,
  title={{GPTQ}: Accurate Post-training Compression for Generative Pretrained Transformers}, 
  author={Elias Frantar and Saleh Ashkboos and Torsten Hoefler and Dan Alistarh},
  year={2022},
  journal={arXiv preprint arXiv:2210.17323}
}

@article{frantar2024marlin,
  title={MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models},
  author={Frantar, Elias and Castro, Roberto L and Chen, Jiale and Hoefler, Torsten and Alistarh, Dan},
  journal={arXiv preprint arXiv:2408.11743},
  year={2024}
}