Home

Awesome

<div align='center'> <img src="assets/title_gemap.png" width="88%" height="auto"></img> </div> <div align="center"> <h3>[ECCV'24] Online Vectorized HD Map Construction Using Geometry </h3>

Zhixin Zhang<sup>1</sup>, Yiyuan Zhang<sup>2</sup>, Xiaohan Ding<sup>3</sup>, Fusheng Jin<sup>1*</sup>, Xiangyu Yue<sup>2</sup>

<sup>1</sup>Beijing Institute of Technology,   <sup>2</sup>CUHK,   <sup>3</sup>Tencent AI Lab

Website | arXiv | YouTube | Bilibili | Zhihu

</div> <div align='center'> <img src='assets/demo_x0.5.gif' alt='framework' width='88%' height='auto'></img> </div>

News

We're working on more powerful and efficient models, please stay tuned.

Motivation

<div align='center'> <img src='assets/geometry.jpg' alt='framework' width='90%' height='auto'></img> </div> <div align='center'> <img src='assets/inv.png' alt='framework' width='90%' height='auto'></img> </div>

Highlights

This work contributes from two perspectives:

Quantitative Results

NuScenes

ModelObjectiveBackboneEpochmAPFPSConfig / LogCheckpoint
GeMapsimpleR5011062.715.6config/logmodel
GeMapsimpleCamera(R50) & LiDAR(SEC)11066.56.8config/logmodel
GeMapfullR5011069.413.3config/logmodel
GeMapfullSwin-T11072.010.0config/logmodel
GeMapfullV2-9911072.29.5config/logmodel
GeMapfullV2-99(DD3D)11076.09.5config/logmodel

Argoverse 2

ModelObjectiveBackboneEpochmAPFPSConfig / LogCheckpoint
GeMapsimpleR50663.913.5config/logmodel
GeMapsimpleR502468.213.5config/logmodel
GeMapfullR502471.812.1config/logmodel

* All models are trained on 8 NVIDIA RTX3090 GPUs. The speed (Frames Per Second, FPS) is evaluated on a single 3090 GPU.

Visualization Results

Comparison Video

GeMap exhibits more robust predictions in occluded and rotated scenarios, especially under rainy weather conditions.

<div align='center'> <video src='https://github.com/cnzzx/GeMap-dev/assets/71703448/f5213adb-15a3-49a4-94c1-f4fe8e43babd.mp4' width='88%' height='auto'></video> </div>

More Cases of GeMap

<div align='center'> <img src="assets/doc_pres.png" width="88%" height="auto"></img> </div>

Getting Started

TODO

Acknowledgements

GeMap is based on mmdetection3d. It is also greatly inspired by the following outstanding contributions to the open-source community: LSS, GKT, Swin-Transformer, VoVNet, BEVFormer, MapTR, BeMapNet, HDMapNet.

Citation

If the paper and code help your research, please kindly cite:

@article{zhang2023online,
  title={Online Vectorized HD Map Construction using Geometry},
  author={Zhang, Zhixin and Zhang, Yiyuan and Ding, Xiaohan and Jin, Fusheng and Yue, Xiangyu},
  journal={arXiv preprint arXiv:2312.03341},
  year={2023}
}