Home

Awesome

<div align="center"> <h1> Geometry-guided Kernel Transformer </h1> <span><font size="5", > Efficient and Robust 2D-to-BEV Representation Learning via Geometry-guided Kernel Transformer </font></span> </br> Shaoyu Chen*, Tianheng Cheng*, <a href="https://xinggangw.info/">Xinggang Wang</a><sup><span>&#8224;</span></sup>, Wenming Meng, <a href="https://scholar.google.com/citations?user=pCY-bikAAAAJ&hl=zh-CN">Qian Zhang</a>, <a href="http://eic.hust.edu.cn/professor/liuwenyu/"> Wenyu Liu</a>

(<span>*</span>: equal contribution, <span></span>: corresponding author) <br>

<div><a href="https://arxiv.org/pdf/2206.04584.pdf">[arXiv Preprint]</a></div> </div>

News

Introduction

Framework

We present a novel and efficient 2D-to-BEV transformation, Geometry-guided Kernel Transformer (GKT).

Getting Started

git clone https://github.com/hustvl/GKT.git

Map-view nuScenes Segmentation

Models

MethodKernelmIoU (Setting 1)mIoU (Setting 2)FPSmodel
CVT-39.337.234.1model
GKT7x141.438.045.6model

Note: FPS are measured on one 2080 Ti GPU.

Usage

For map-view nuScenes segmentation, we mainly build the GKT based on the awesome CrossViewTransformer.

# map-view segmentation
cd segmentation

Prerequisites

# install dependencies
pip install -r reuqirements.txt
pip install -e .

Preparing the Dataset

Training / Testing / Benchmarking

Download the pretrained model efficientnet-b4-6ed6700e.pth

mkdir pretrained_models
cd pretrained_models
# place the pretrained model here
python scripts/train.py +experiment=gkt_nuscenes_vehicle_kernel_7x1.yaml  data.dataset_dir=<path/to/nuScenes> data.labels_dir=<path/to/labels>

Using the absolute path of the checkpoint is better.

python scripts/eval.py +experiment=gkt_nuscenes_vehicle_kernel_7x1.yaml data.dataset_dir=<path/to/nuScenes> data.labels_dir=<path/to/labels> experiment.ckptt <path/to/checkpoint>
python scripts/speed.py +experiment=gkt_nuscenes_vehicle_kernel_7x1.yaml data.dataset_dir=<path/to/nuScenes> data.labels_dir=<path/to/labels>

3D Object Detection

coming soon.

Acknowledgements

We sincerely appreciate the awesome repos cross_view_transformers and fiery!

License

GKT is released under the MIT Licence.

Citation

If you find GKT is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.

@article{GeokernelTransformer,
  title={Efficient and Robust 2D-to-BEV Representation Learning via Geometry-guided Kernel Transformer},
  author={Chen, Shaoyu and Cheng, Tianheng and Wang, Xinggang and Meng, Wenming and Zhang, Qian and Liu, Wenyu},
  journal={arXiv preprint arXiv:2206.04584},
  year={2022}
}