Awesome
Hrnet语义分割模型在Pytorch当中的实现
目录
- 仓库更新 Top News
- 相关仓库 Related code
- 性能情况 Performance
- 所需环境 Environment
- 文件下载 Download
- 训练步骤 How2train
- 预测步骤 How2predict
- 评估步骤 miou
- 参考资料 Reference
Top News
2022-03
:创建仓库、支持多backbone、支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整。
相关仓库
性能情况
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mIOU |
---|---|---|---|---|
VOC12+SBD | hrnetv2_w18_weights_voc.pth | VOC-Val12 | 480x480 | 73.29 |
VOC12+SBD | hrnetv2_w32_weights_voc.pth | VOC-Val12 | 480x480 | 76.90 |
所需环境
torch==1.2.0
文件下载
训练所需的权值可在百度网盘中下载。
链接: https://pan.baidu.com/s/1B7PmhcdScmV5S0SIZE-s_Q
提取码: 9dss
VOC拓展数据集的百度网盘如下:
链接: https://pan.baidu.com/s/1vkk3lMheUm6IjTXznlg7Ng
提取码: 44mk
训练步骤
a、训练voc数据集
1、将我提供的voc数据集放入VOCdevkit中(无需运行voc_annotation.py)。
2、在train.py中设置对应参数,默认参数已经对应voc数据集所需要的参数了,所以只要修改backbone和model_path即可。
3、运行train.py进行训练。
b、训练自己的数据集
1、本文使用VOC格式进行训练。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
4、在训练前利用voc_annotation.py文件生成对应的txt。
5、在train.py文件夹下面,选择自己要使用的主干模型。
6、注意修改train.py的num_classes为分类个数+1。
7、运行train.py即可开始训练。
预测步骤
a、使用预训练权重
1、下载完库后解压,在百度网盘下载权值,放入model_data,修改hrnet.py的backbone和model_path之后再运行predict.py,输入。
img/street.jpg
可完成预测。
2、在predict.py里面进行设置可以进行fps测试、整个文件夹的测试和video视频检测。
b、使用自己训练的权重
1、按照训练步骤训练。
2、在hrnet.py文件里面,在如下部分修改model_path、num_classes、backbone使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,num_classes代表要预测的类的数量加1,backbone是所使用的主干特征提取网络。
_defaults = {
#-------------------------------------------------------------------#
# model_path指向logs文件夹下的权值文件
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
# 验证集损失较低不代表miou较高,仅代表该权值在验证集上泛化性能较好。
#-------------------------------------------------------------------#
"model_path" : 'model_data/hrnetv2_w18_weights_voc.pth',
#----------------------------------------#
# 所需要区分的类的个数+1
#----------------------------------------#
"num_classes" : 21,
#----------------------------------------#
# 所使用的的主干网络:
# hrnetv2_w18
# hrnetv2_w32
# hrnetv2_w48
#----------------------------------------#
"backbone" : "hrnetv2_w18",
#----------------------------------------#
# 输入图片的大小
#----------------------------------------#
"input_shape" : [480, 480],
#-------------------------------------------------#
# mix_type参数用于控制检测结果的可视化方式
#
# mix_type = 0的时候代表原图与生成的图进行混合
# mix_type = 1的时候代表仅保留生成的图
# mix_type = 2的时候代表仅扣去背景,仅保留原图中的目标
#-------------------------------------------------#
"mix_type" : 0,
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True,
}
3、运行predict.py,输入
img/street.jpg
可完成预测。
4、在predict.py里面进行设置可以进行fps测试、整个文件夹的测试和video视频检测。
评估步骤
1、设置get_miou.py里面的num_classes为预测的类的数量加1。
2、设置get_miou.py里面的name_classes为需要去区分的类别。
3、运行get_miou.py即可获得miou大小。
Reference
https://github.com/ggyyzm/pytorch_segmentation
https://github.com/bonlime/keras-deeplab-v3-plus
https://github.com/HRNet/HRNet-Semantic-Segmentation