Home

Awesome

Semantic Segmentation in PyTorch

<!-- TOC --> <!-- /TOC -->

This repo contains a PyTorch an implementation of different semantic segmentation models for different datasets.

Requirements

PyTorch and Torchvision needs to be installed before running the scripts, together with PIL and opencv for data-preprocessing and tqdm for showing the training progress. PyTorch v1.1 is supported (using the new supported tensoboard); can work with ealier versions, but instead of using tensoboard, use tensoboardX.

pip install -r requirements.txt

or for a local installation

pip install --user -r requirements.txt

Main Features

So, what's available ?

Models

Datasets

Losses

In addition to the Cross-Entorpy loss, there is also

Learning rate schedulers

<p align="center"><img src="images/learning_rates.png" align="center" width="750"></p>

Data augmentation

All of the data augmentations are implemented using OpenCV in \base\base_dataset.py, which are: rotation (between -10 and 10 degrees), random croping between 0.5 and 2 of the selected crop_size, random h-flip and blurring

Training

To train a model, first download the dataset to be used to train the model, then choose the desired architecture, add the correct path to the dataset and set the desired hyperparameters (the config file is detailed below), then simply run:

python train.py --config config.json

The training will automatically be run on the GPUs (if more that one is detected and multipple GPUs were selected in the config file, torch.nn.DataParalled is used for multi-gpu training), if not the CPU is used. The log files will be saved in saved\runs and the .pth chekpoints in saved\, to monitor the training using tensorboard, please run:

tensorboard --logdir saved
<p align="center"><img src="images/tb1.png" align="center" width="900"></p> <p align="center"><img src="images/tb2.png" align="center" width="900"></p>

Inference

For inference, we need a PyTorch trained model, the images we'd like to segment and the config used in training (to load the correct model and other parameters),

python inference.py --config config.json --model best_model.pth --images images_folder

The predictions will be saved as .png images using the default palette in the passed fodler name, if not, outputs\ is used, for Pacal VOC the default palette is:

<p align="center"><img src="images/colour_scheme.png" align="center" width="550"></p>

Here are the parameters availble for inference:

--output       The folder where the results will be saved (default: outputs).
--extension    The extension of the images to segment (default: jpg).
--images       Folder containing the images to segment.
--model        Path to the trained model.
--mode         Mode to be used, choose either `multiscale` or `sliding` for inference (multiscale is the default behaviour).
--config       The config file used for training the model.

Trained Model:

ModelBackbonePascalVoc val mIoUPascalVoc test mIoUPretrained Model
PSPNetResNet 5082%79%Dropbox

Code structure

The code structure is based on pytorch-template

pytorch-template/
│
├── train.py - main script to start training
├── inference.py - inference using a trained model
├── trainer.py - the main trained
├── config.json - holds configuration for training
│
├── base/ - abstract base classes
│   ├── base_data_loader.py
│   ├── base_model.py
│   ├── base_dataset.py - All the data augmentations are implemented here
│   └── base_trainer.py
│
├── dataloader/ - loading the data for different segmentation datasets
│
├── models/ - contains semantic segmentation models
│
├── saved/
│   ├── runs/ - trained models are saved here
│   └── log/ - default logdir for tensorboard and logging output
│  
└── utils/ - small utility functions
    ├── losses.py - losses used in training the model
    ├── metrics.py - evaluation metrics used
    └── lr_scheduler - learning rate schedulers 

Config file format

Config files are in .json format:

{
  "name": "PSPNet",         // training session name
  "n_gpu": 1,               // number of GPUs to use for training.
  "use_synch_bn": true,     // Using Synchronized batchnorm (for multi-GPU usage)

    "arch": {
        "type": "PSPNet", // name of model architecture to train
        "args": {
            "backbone": "resnet50",     // encoder type type
            "freeze_bn": false,         // When fine tuning the model this can be used
            "freeze_backbone": false    // In this case only the decoder is trained
        }
    },

    "train_loader": {
        "type": "VOC",          // Selecting data loader
        "args":{
            "data_dir": "data/",  // dataset path
            "batch_size": 32,     // batch size
            "augment": true,      // Use data augmentation
            "crop_size": 380,     // Size of the random crop after rescaling
            "shuffle": true,
            "base_size": 400,     // The image is resized to base_size, then randomly croped
            "scale": true,        // Random rescaling between 0.5 and 2 before croping
            "flip": true,         // Random H-FLip
            "rotate": true,       // Random rotation between 10 and -10 degrees
            "blur": true,         // Adding a slight amount of blut to the image
            "split": "train_aug", // Split to use, depend of the dataset
            "num_workers": 8
        }
    },

    "val_loader": {     // Same for val, but no data augmentation, only a center crop
        "type": "VOC",
        "args":{
            "data_dir": "data/",
            "batch_size": 32,
            "crop_size": 480,
            "val": true,
            "split": "val",
            "num_workers": 4
        }
    },

    "optimizer": {
        "type": "SGD",
        "differential_lr": true,      // Using lr/10 for the backbone, and lr for the rest
        "args":{
            "lr": 0.01,               // Learning rate
            "weight_decay": 1e-4,     // Weight decay
            "momentum": 0.9
        }
    },

    "loss": "CrossEntropyLoss2d",     // Loss (see utils/losses.py)
    "ignore_index": 255,              // Class to ignore (must be set to -1 for ADE20K) dataset
    "lr_scheduler": {   
        "type": "Poly",               // Learning rate scheduler (Poly or OneCycle)
        "args": {}
    },

    "trainer": {
        "epochs": 80,                 // Number of training epochs
        "save_dir": "saved/",         // Checkpoints are saved in save_dir/models/
        "save_period": 10,            // Saving chechpoint each 10 epochs
  
        "monitor": "max Mean_IoU",    // Mode and metric for model performance 
        "early_stop": 10,             // Number of epochs to wait before early stoping (0 to disable)
        
        "tensorboard": true,        // Enable tensorboard visualization
        "log_dir": "saved/runs",
        "log_per_iter": 20,         

        "val": true,
        "val_per_epochs": 5         // Run validation each 5 epochs
    }
}

Acknowledgement