Home

Awesome

<p align="center"> <h3 align="center"><strong>MeshAnything:<br> Artist-Created Mesh Generation<br> with Autoregressive Transformers</strong></h3> <p align="center"> <a href="https://buaacyw.github.io/">Yiwen Chen</a><sup>1,2*</sup>, <a href="https://tonghe90.github.io/">Tong He</a><sup>2†</sup>, <a href="https://dihuang.me/">Di Huang</a><sup>2</sup>, <a href="https://ywcmaike.github.io/">Weicai Ye</a><sup>2</sup>, <a href="https://ch3cook-fdu.github.io/">Sijin Chen</a><sup>3</sup>, <a href="https://me.kiui.moe/">Jiaxiang Tang</a><sup>4</sup><br> <a href="https://chenxin.tech/">Xin Chen</a><sup>5</sup>, <a href="https://caizhongang.github.io/">Zhongang Cai</a><sup>6</sup>, <a href="https://scholar.google.com.hk/citations?user=jZH2IPYAAAAJ&hl=en">Lei Yang</a><sup>6</sup>, <a href="https://www.skicyyu.org/">Gang Yu</a><sup>7</sup>, <a href="https://guosheng.github.io/">Guosheng Lin</a><sup>1†</sup>, <a href="https://icoz69.github.io/">Chi Zhang</a><sup>8†</sup> <br> <sup>*</sup>Work done during a research internship at Shanghai AI Lab. <br> <sup>†</sup>Corresponding authors. <br> <sup>1</sup>S-Lab, Nanyang Technological University, <sup>2</sup>Shanghai AI Lab, <br> <sup>3</sup>Fudan University, <sup>4</sup>Peking University, <sup>5</sup>University of Chinese Academy of Sciences, <br> <sup>6</sup>SenseTime Research, <sup>7</sup>Stepfun, <sup>8</sup>Westlake University </p> <div align="center">

<a href='https://arxiv.org/abs/2406.10163'><img src='https://img.shields.io/badge/arXiv-2406.10163-b31b1b.svg'></a>      <a href='https://buaacyw.github.io/mesh-anything/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>      <a href='https://github.com/buaacyw/MeshAnything/blob/master/LICENSE.txt'><img src='https://img.shields.io/badge/License-SLab-blue'></a>      <a href="https://huggingface.co/Yiwen-ntu/MeshAnything/tree/main"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Weights-HF-orange"></a>      <a href="https://huggingface.co/spaces/Yiwen-ntu/MeshAnything"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Gradio%20Demo-HF-orange"></a>

</div> <p align="center"> <img src="demo/demo_video.gif" alt="Demo GIF" width="512px" /> </p>

Release

Contents

Installation

Our environment has been tested on Ubuntu 22, CUDA 11.8 with A100, A800 and A6000.

  1. Clone our repo and create conda environment
git clone https://github.com/buaacyw/MeshAnything.git && cd MeshAnything
conda create -n MeshAnything python==3.10.13 -y
conda activate MeshAnything
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
pip install flash-attn --no-build-isolation

or

pip install git+https://github.com/buaacyw/MeshAnything.git

And directly use in your code as

import MeshAnything

Usage

Local Gradio Demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>

python app.py

Mesh Command line inference

# folder input
python main.py --input_dir examples --out_dir mesh_output --input_type mesh

# single file input
python main.py --input_path examples/wand.obj --out_dir mesh_output --input_type mesh

# Preprocess with Marching Cubes first
python main.py --input_dir examples --out_dir mesh_output --input_type mesh --mc

Point Cloud Command line inference

# Note: if you want to use your own point cloud, please make sure the normal is included.
# The file format should be a .npy file with shape (N, 6), where N is the number of points. The first 3 columns are the coordinates, and the last 3 columns are the normal.

# inference for folder
python main.py --input_dir pc_examples --out_dir pc_output --input_type pc_normal

# inference for single file
python main.py --input_path pc_examples/mouse.npy --out_dir pc_output --input_type pc_normal

Important Notes

TODO

The repo is still being under construction, thanks for your patience.

Acknowledgement

Our code is based on these wonderful repos:

Star History

Star History Chart

BibTeX

@misc{chen2024meshanything,
  title={MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers},
  author={Yiwen Chen and Tong He and Di Huang and Weicai Ye and Sijin Chen and Jiaxiang Tang and Xin Chen and Zhongang Cai and Lei Yang and Gang Yu and Guosheng Lin and Chi Zhang},
  year={2024},
  eprint={2406.10163},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}