Home

Awesome

DreamCraft3D

Paper | Project Page | Youtube video | Replicate demo

Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior

Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen Liu, Zhenda Xie, Yebin Liu

Abstract: We present DreamCraft3D, a hierarchical 3D content generation method that produces high-fidelity and coherent 3D objects. We tackle the problem by leveraging a 2D reference image to guide the stages of geometry sculpting and texture boosting. A central focus of this work is to address the consistency issue that existing works encounter. To sculpt geometries that render coherently, we perform score distillation sampling via a view-dependent diffusion model. This 3D prior, alongside several training strategies, prioritizes the geometry consistency but compromises the texture fidelity. We further propose Bootstrapped Score Distillation to specifically boost the texture. We train a personalized diffusion model, Dreambooth, on the augmented renderings of the scene, imbuing it with 3D knowledge of the scene being optimized. The score distillation from this 3D-aware diffusion prior provides view-consistent guidance for the scene. Notably, through an alternating optimization of the diffusion prior and 3D scene representation, we achieve mutually reinforcing improvements: the optimized 3D scene aids in training the scene-specific diffusion model, which offers increasingly view-consistent guidance for 3D optimization. The optimization is thus bootstrapped and leads to substantial texture boosting. With tailored 3D priors throughout the hierarchical generation, DreamCraft3D generates coherent 3D objects with photorealistic renderings, advancing the state-of-the-art in 3D content generation.

<p align="center"> <img src="assets/repo_static_v2.png"> </p>

Method Overview

<p align="center"> <img src="assets/diagram-1.png"> </p> <!-- https://github.com/MrTornado24/DreamCraft3D/assets/45503891/8e70610c-d812-4544-86bf-7f8764e41067 https://github.com/MrTornado24/DreamCraft3D/assets/45503891/b1e8ae54-1afd-4e0f-88f7-9bd5b70fd44d https://github.com/MrTornado24/DreamCraft3D/assets/45503891/ead40f9b-d7ee-4ee8-8d98-dbd0b8fbab97 -->

Installation

Install threestudio

This part is the same as original threestudio. Skip it if you already have installed the environment.

See installation.md for additional information, including installation via Docker.

python3 -m virtualenv venv
. venv/bin/activate

# Newer pip versions, e.g. pip-23.x, can be much faster than old versions, e.g. pip-20.x.
# For instance, it caches the wheels of git packages to avoid unnecessarily rebuilding them later.
python3 -m pip install --upgrade pip
# torch1.12.1+cu113
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
# or torch2.0.0+cu118
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
pip install ninja
pip install -r requirements.txt

Download pre-trained models

cd load/zero123
bash download.sh
cd load/omnidata
gdown '1Jrh-bRnJEjyMCS7f-WsaFlccfPjJPPHI&confirm=t' # omnidata_dpt_depth_v2.ckpt
gdown '1wNxVO4vVbDEMEpnAi_jwQObf2MFodcBR&confirm=t' # omnidata_dpt_normal_v2.ckpt

Quickstart

Preprocess the input image to move background and obtain its depth and normal image.

python preprocess_image.py /path/to/image.png --recenter

Our model is trained in multiple stages. You can run it by

prompt="a brightly colored mushroom growing on a log"
image_path="load/images/mushroom_log_rgba.png"

# --------- Stage 1 (NeRF & NeuS) --------- # 
python launch.py --config configs/dreamcraft3d-coarse-nerf.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path"

ckpt=outputs/dreamcraft3d-coarse-nerf/$prompt@LAST/ckpts/last.ckpt
python launch.py --config configs/dreamcraft3d-coarse-neus.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.weights="$ckpt"

# --------- Stage 2 (Geometry Refinement) --------- # 
ckpt=outputs/dreamcraft3d-coarse-neus/$prompt@LAST/ckpts/last.ckpt
python launch.py --config configs/dreamcraft3d-geometry.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.geometry_convert_from="$ckpt"


# --------- Stage 3 (Texture Refinement) --------- # 
ckpt=outputs/dreamcraft3d-geometry/$prompt@LAST/ckpts/last.ckpt
python launch.py --config configs/dreamcraft3d-texture.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.geometry_convert_from="$ckpt"
<details> <summary>[Optional] If the "Janus problem" arises in Stage 1, consider training a custom Text2Image model.</summary>

First, generate multi-view images from a single reference image by Zero123++.

python threestudio/scripts/img_to_mv.py --image_path 'load/mushroom.png' --save_path '.cache/temp' --prompt 'a photo of mushroom' --superres

Train a personalized DeepFloyd model by DreamBooth Lora. Please check if the generated mv images above are reasonable.

export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR=".cache/temp"
export OUTPUT_DIR=".cache/if_dreambooth_mushroom"

accelerate launch threestudio/scripts/train_dreambooth_lora.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --instance_prompt="a sks mushroom" \
  --resolution=64 \
  --train_batch_size=4 \
  --gradient_accumulation_steps=1 \
  --learning_rate=5e-6 \
  --scale_lr \
  --max_train_steps=1200 \
  --checkpointing_steps=600 \
  --pre_compute_text_embeddings \
  --tokenizer_max_length=77 \
  --text_encoder_use_attention_mask

The personalized DeepFloyd model lora is save at .cache/if_dreambooth_mushroom. Now you can replace the guidance the training scripts by

# --------- Stage 1 (NeRF & NeuS) --------- # 
python launch.py --config configs/dreamcraft3d-coarse-nerf.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.guidance.lora_weights_path=".cache/if_dreambooth_mushroom"
</details>

Tips

Export Meshes

You can export the textured mesh obj using the following scipt:

# this uses default mesh-exporter configurations which exports obj+mtl
python launch.py --config path/to/trial/dir/configs/parsed.yaml --export --gpu 0 resume=path/to/trial/dir/ckpts/last.ckpt system.exporter_type=mesh-exporter
<details> <summary> Visualization of the example OBJ File. </summary> <p align="center"> <img src="assets/mesh_meshlab.jpg"> </p> </details>

Todo

Credits

This code is built on the amazing open-source projects threestudio-project and stable-dreamfusion.

Related links

BibTeX

@article{sun2023dreamcraft3d,
  title={Dreamcraft3d: Hierarchical 3d generation with bootstrapped diffusion prior},
  author={Sun, Jingxiang and Zhang, Bo and Shao, Ruizhi and Wang, Lizhen and Liu, Wen and Xie, Zhenda and Liu, Yebin},
  journal={arXiv preprint arXiv:2310.16818},
  year={2023}
}