Home

Awesome

<h1 align='center'>EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation</h1> <div align='center'> <a href='https://github.com/mengrang' target='_blank'>Rang Meng</a><sup></sup>&emsp; <a href='https://github.com/' target='_blank'>Xingyu Zhang</a><sup></sup>&emsp; <a href='https://lymhust.github.io/' target='_blank'>Yuming Li</a><sup></sup>&emsp; <a href='https://github.com/' target='_blank'>Chenguang Ma</a><sup></sup> </div> <div align='center'> Terminal Technology Department, Alipay, Ant Group. </div> <br> <div align='center'> <a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/Project-Page-blue'></a> <a href='https://huggingface.co/BadToBest/EchoMimicV2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a> <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Demo-yellow'></a>--> <a href='https://modelscope.cn/models/BadToBest/EchoMimicV2'><img src='https://img.shields.io/badge/ModelScope-Model-purple'></a> <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/ModelScope-Demo-purple'></a>--> <a href='https://arxiv.org/abs/2411.10061'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> <a href='https://github.com/antgroup/echomimic_v2/blob/main/assets/halfbody_demo/wechat_group.png'><img src='https://badges.aleen42.com/src/wechat.svg'></a> </div>

šŸš€ EchoMimic Series

šŸ“£ Updates

šŸŒ… Gallery

Introduction

<table class="center"> <tr> <td width=50% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/f544dfc0-7d1a-4c2c-83c0-608f28ffda25" muted="false"></video> </td> <td width=50% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/7f626b65-725c-4158-a96b-062539874c63" muted="false"></video> </td> </tr> </table>

English Driven Audio

<table class="center"> <tr> <td width=100% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/3d5ac52c-62e4-41bc-8b27-96f005bbd781" muted="false"></video> </td> </tr> </table> <table class="center"> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/e8dd6919-665e-4343-931f-54c93dc49a7d" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/2a377391-a0d3-4a9d-8dde-cc59006e7e5b" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/462bf3bb-0af2-43e2-a2dc-559e79953f3c" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/0e988e7f-6346-4b54-9061-9cfc7a80e9c8" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/56f739bd-afbf-4ed3-ab15-73a811c1bc46" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/1b2f7827-111d-4fc0-a773-e1731bba285d" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/a76b6cc8-89b9-4f7e-b1ce-c85a657b6dc7" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/bf03b407-5033-4a30-aa59-b8680a515181" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/f98b3985-572c-499f-ae1a-1b9befe3086f" muted="false"></video> </td> </tr> </table>

Chinese Driven Audio

<table class="center"> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/a940a332-2fd1-48e7-b3c4-f88f63fd1c9d" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/8f185829-c67f-45f4-846c-fcbe012c3acf" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/a49ab9be-f17b-41c5-96dd-20dc8d759b45" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/1136ec68-a13c-4ee7-ab31-5621530bf9df" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/fc16d512-8806-4662-ae07-8fcf45c75a83" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/f8559cd1-f555-4781-9251-dfcef10b5b01" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/c7473e3a-ab51-4ad5-be96-6c4691fc0c6e" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/ca69eac0-5126-41ee-8cac-c9722004d771" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/e66f1712-b66d-46b5-8bbd-811fbcfea4fd" muted="false"></video> </td> </tr> </table>

āš’ļø Installation

Download the Codes

  git clone https://github.com/antgroup/echomimic_v2
  cd echomimic_v2

Python Environment Setup

Create conda environment (Recommended):

  conda create -n echomimic python=3.10
  conda activate echomimic

Install packages with pip

  pip install pip -U
  pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 xformers==0.0.28.post3 --index-url https://download.pytorch.org/whl/cu124
  pip install torchao --index-url https://download.pytorch.org/whl/nightly/cu124
  pip install -r requirements.txt
  pip install --no-deps facenet_pytorch==2.6.0

Download ffmpeg-static

Download and decompress ffmpeg-static, then

export FFMPEG_PATH=/path/to/ffmpeg-4.4-amd64-static

Download pretrained weights

git lfs install
git clone https://huggingface.co/BadToBest/EchoMimicV2 pretrained_weights

The pretrained_weights is organized as follows.

./pretrained_weights/
ā”œā”€ā”€ denoising_unet.pth
ā”œā”€ā”€ reference_unet.pth
ā”œā”€ā”€ motion_module.pth
ā”œā”€ā”€ pose_encoder.pth
ā”œā”€ā”€ sd-vae-ft-mse
ā”‚   ā””ā”€ā”€ ...
ā”œā”€ā”€ sd-image-variations-diffusers
ā”‚   ā””ā”€ā”€ ...
ā””ā”€ā”€ audio_processor
    ā””ā”€ā”€ tiny.pt

In which denoising_unet.pth / reference_unet.pth / motion_module.pth / pose_encoder.pth are the main checkpoints of EchoMimic. Other models in this hub can be also downloaded from it's original hub, thanks to their brilliant works:

Inference on Demo

Run the gradio:

python gradio.py

Run the python inference script:

python infer.py --config='./configs/prompts/infer.yaml'

EMTD Dataset

Download dataset:

python ./EMTD_dataset/download.py

Slice dataset:

bash ./EMTD_dataset/slice.sh

Process dataset:

python ./EMTD_dataset/preprocess.py

šŸ“ Release Plans

StatusMilestoneETA
āœ…The inference source code of EchoMimicV2 meet everyone on GitHub21st Nov, 2024
āœ…Pretrained models trained on English and Mandarin Chinese on HuggingFace21st Nov, 2024
āœ…Pretrained models trained on English and Mandarin Chinese on ModelScope21st Nov, 2024
āœ…EMTD dataset list and processing scripts21st Nov, 2024
šŸš€Accelerated models to be releasedTBD
šŸš€Online Demo on ModelScope to be releasedTBD
šŸš€Online Demo on HuggingFace to be releasedTBD

āš–ļø Disclaimer

This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using the generative model. The project contributors have no legal affiliation with, nor accountability for, users' behaviors. It is imperative to use the generative model responsibly, adhering to both ethical and legal standards.

šŸ™šŸ» Acknowledgements

We would like to thank the contributors to the MimicMotion and Moore-AnimateAnyone repositories, for their open research and exploration.

We are also grateful to CyberHost and Vlogger for their outstanding work in the area of audio-driven human animation.

If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.

šŸ“’ Citation

If you find our work useful for your research, please consider citing the paper :

@misc{meng2024echomimic,
  title={EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation},
  author={Rang Meng, Xingyu Zhang, Yuming Li, Chenguang Ma},
  year={2024},
  eprint={2411.10061},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

šŸŒŸ Star History

Star History Chart