Home

Awesome

<h1 align='center'>EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation</h1> <div align='center'> <a href='https://github.com/mengrang' target='_blank'>Rang Meng</a><sup></sup>&emsp; <a href='https://github.com/' target='_blank'>Xingyu Zhang</a><sup></sup>&emsp; <a href='https://lymhust.github.io/' target='_blank'>Yuming Li</a><sup></sup>&emsp; <a href='https://github.com/' target='_blank'>Chenguang Ma</a><sup></sup> </div> <div align='center'> Terminal Technology Department, Alipay, Ant Group. </div> <br> <div align='center'> <a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/Project-Page-blue'></a> <a href='https://huggingface.co/BadToBest/EchoMimicV2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a> <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Demo-yellow'></a>--> <a href='https://modelscope.cn/models/BadToBest/EchoMimicV2'><img src='https://img.shields.io/badge/ModelScope-Model-purple'></a> <!--<a href='https://antgroup.github.io/ai/echomimic_v2/'><img src='https://img.shields.io/badge/ModelScope-Demo-purple'></a>--> <a href='https://arxiv.org/abs/2411.10061'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> <a href='https://github.com/antgroup/echomimic_v2/blob/main/assets/halfbody_demo/wechat_group.png'><img src='https://badges.aleen42.com/src/wechat.svg'></a> </div> <div align='center'> <a href='https://github.com/antgroup/echomimic_v2/discussions/53'><img src='https://img.shields.io/badge/English-Common Problems-orange'></a> <a href='https://github.com/antgroup/echomimic_v2/discussions/40'><img src='https://img.shields.io/badge/中文版-常见问题汇总-orange'></a> </div>

🚀 EchoMimic Series

📣 Updates

🌅 Gallery

Introduction

<table class="center"> <tr> <td width=50% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/f544dfc0-7d1a-4c2c-83c0-608f28ffda25" muted="false"></video> </td> <td width=50% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/7f626b65-725c-4158-a96b-062539874c63" muted="false"></video> </td> </tr> </table>

English Driven Audio

<table class="center"> <tr> <td width=100% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/3d5ac52c-62e4-41bc-8b27-96f005bbd781" muted="false"></video> </td> </tr> </table> <table class="center"> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/e8dd6919-665e-4343-931f-54c93dc49a7d" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/2a377391-a0d3-4a9d-8dde-cc59006e7e5b" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/462bf3bb-0af2-43e2-a2dc-559e79953f3c" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/0e988e7f-6346-4b54-9061-9cfc7a80e9c8" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/56f739bd-afbf-4ed3-ab15-73a811c1bc46" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/1b2f7827-111d-4fc0-a773-e1731bba285d" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/a76b6cc8-89b9-4f7e-b1ce-c85a657b6dc7" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/bf03b407-5033-4a30-aa59-b8680a515181" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/f98b3985-572c-499f-ae1a-1b9befe3086f" muted="false"></video> </td> </tr> </table>

Chinese Driven Audio

<table class="center"> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/a940a332-2fd1-48e7-b3c4-f88f63fd1c9d" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/8f185829-c67f-45f4-846c-fcbe012c3acf" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/a49ab9be-f17b-41c5-96dd-20dc8d759b45" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/1136ec68-a13c-4ee7-ab31-5621530bf9df" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/fc16d512-8806-4662-ae07-8fcf45c75a83" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/f8559cd1-f555-4781-9251-dfcef10b5b01" muted="false"></video> </td> </tr> <tr> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/c7473e3a-ab51-4ad5-be96-6c4691fc0c6e" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/ca69eac0-5126-41ee-8cac-c9722004d771" muted="false"></video> </td> <td width=30% style="border: none"> <video controls loop src="https://github.com/user-attachments/assets/e66f1712-b66d-46b5-8bbd-811fbcfea4fd" muted="false"></video> </td> </tr> </table>

⚒️ Automatic Installation

Download the Codes

  git clone https://github.com/antgroup/echomimic_v2
  cd echomimic_v2

Automatic Setup

   sh linux_setup.sh

⚒️ Manual Installation

Download the Codes

  git clone https://github.com/antgroup/echomimic_v2
  cd echomimic_v2

Python Environment Setup

Create conda environment (Recommended):

  conda create -n echomimic python=3.10
  conda activate echomimic

Install packages with pip

  pip install pip -U
  pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 xformers==0.0.28.post3 --index-url https://download.pytorch.org/whl/cu124
  pip install torchao --index-url https://download.pytorch.org/whl/nightly/cu124
  pip install -r requirements.txt
  pip install --no-deps facenet_pytorch==2.6.0

Download ffmpeg-static

Download and decompress ffmpeg-static, then

export FFMPEG_PATH=/path/to/ffmpeg-4.4-amd64-static

Download pretrained weights

git lfs install
git clone https://huggingface.co/BadToBest/EchoMimicV2 pretrained_weights

The pretrained_weights is organized as follows.

./pretrained_weights/
├── denoising_unet.pth
├── reference_unet.pth
├── motion_module.pth
├── pose_encoder.pth
├── sd-vae-ft-mse
│   └── ...
├── sd-image-variations-diffusers
│   └── ...
└── audio_processor
    └── tiny.pt

In which denoising_unet.pth / reference_unet.pth / motion_module.pth / pose_encoder.pth are the main checkpoints of EchoMimic. Other models in this hub can be also downloaded from it's original hub, thanks to their brilliant works:

Inference on Demo

Run the gradio:

python app.py

Run the python inference script:

python infer.py --config='./configs/prompts/infer.yaml'

EMTD Dataset

Download dataset:

python ./EMTD_dataset/download.py

Slice dataset:

bash ./EMTD_dataset/slice.sh

Process dataset:

python ./EMTD_dataset/preprocess.py

📝 Release Plans

StatusMilestoneETA
The inference source code of EchoMimicV2 meet everyone on GitHub21st Nov, 2024
Pretrained models trained on English and Mandarin Chinese on HuggingFace21st Nov, 2024
Pretrained models trained on English and Mandarin Chinese on ModelScope21st Nov, 2024
EMTD dataset list and processing scripts21st Nov, 2024
Jupyter demo with pose and reference image alignmnet16st Dec, 2024
🚀Accelerated models to be releasedTBD
🚀Online Demo on ModelScope to be releasedTBD
🚀Online Demo on HuggingFace to be releasedTBD

⚖️ Disclaimer

This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using the generative model. The project contributors have no legal affiliation with, nor accountability for, users' behaviors. It is imperative to use the generative model responsibly, adhering to both ethical and legal standards.

🙏🏻 Acknowledgements

We would like to thank the contributors to the MimicMotion and Moore-AnimateAnyone repositories, for their open research and exploration.

We are also grateful to CyberHost and Vlogger for their outstanding work in the area of audio-driven human animation.

If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.

📒 Citation

If you find our work useful for your research, please consider citing the paper :

@misc{meng2024echomimic,
  title={EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation},
  author={Rang Meng, Xingyu Zhang, Yuming Li, Chenguang Ma},
  year={2024},
  eprint={2411.10061},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

🌟 Star History

Star History Chart