Home

Awesome

A Survey of LLM Surveys

Large language models (LLMs) are making sweeping advances across many fields of artificial intelligence. As a result, research interest and progress in LLMs have exploded. There are now hundreds of research papers on LLMs published in various conferences or posted to open-access archives every day. Given the significant growth in LLM-related papers, this work compiles surveys on LLMs to provide a comprehensive overview of the field. Most of these surveys have been published or posted in the past few years, so this collection is relatively new. We hope that our compilation can be helpful for people who want to get a quick understanding of the field.

<!-- :new: We add a NEW category of large language models! [<a href="#large-language-models">Large Language Models</a>] -->

Outline

<!-- + Large Language Modeling + <a href="#alignment">Alignment</a> + <a href="#data">Data</a> + <a href="#evaluation">Evaluation</a> + <a href="#societal-implications">Societal Implications</a> + <a href="#safety">Safety</a> + <a href="#science-of-LMs">Science of LMs</a> + <a href="#compute-efficient-lms">Compute Efficient LMs</a> + <a href="#engineering-for-large-lms">Engineering for Large LMs</a> + <a href="#learning-algorithms">Learning Algorithms</a> + <a href="#inference-algorithms">Inference Algorithms</a> + <a href="#human-mind-brain-philosophy-laws-and-LMs">Human Mind, Brain, Philosophy, Laws and LMs</a> + <a href="#lms-for-everyone">LMs for Everyone</a> + <a href="#lms-and-the-world">LMs and The world</a> + <a href="#lms-and-embodiment">LMs and Embodiment</a> + <a href="#lms-and-interactions">LMs and Interactions</a> + <a href="#lms-with-tools-and-code">LMs with Tools and Code</a> + <a href="#lms-on-diverse-modalities-and-novel-applications">LMs on Diverse Modalities and Novel Applications</a> -->

Survey List

General Surveys<a id="section1"></a>

Transformers<a id="section2"></a>

Alignment<a id="section3"></a>

Prompt Learning<a id="section4"></a>

In-context Learning<a id="section5"></a>
Chain of Thought<a id="section6"></a>
Prompt Engineering<a id="section7"></a>
Reasoning<a id="section8"></a>

Data<a id="section9"></a>

Evaluation<a id="section10"></a>

Societal Issues<a id="section11"></a>

Safety<a id="section12"></a>

Source Detection<a id="section13"></a>
Security<a id="section14"></a>

Misinformation<a id="section15"></a>

Hallucinations<a id="section16"></a>
Factuality<a id="section17"></a>

Attributes of LLMs<a id="section18"></a>

Efficient LLMs<a id="section19"></a>

Learning Methods for LLMs<a id="section20"></a>

Multimodal LLMs<a id="section21"></a>

Knowledge Based LLMs<a id="section22"></a>

Retrieval-Augmented LLMs<a id="section23"></a>
Knowledge Editing<a id="section24"></a>

Extension of LLMs<a id="section25"></a>

LLMs with Tools<a id="section26"></a>
LLMs and Interactions<a id="section27"></a>

Long Sequence LLMs<a id="section28"></a>

LLMs Applications<a id="section29"></a>

Education<a id="section30"></a>
Law<a id="section31"></a>
Healthcare<a id="section32"></a>
Games<a id="section33"></a>
NLP Tasks<a id="section34"></a>
Software Engineering<a id="section35"></a>
Recommender Systems<a id="section36"></a>
Graphs<a id="section37"></a>
Other<a id="section38"></a>
<!-- >Feel free to let me know the missing papers (issue or pull request). --> <!-- ## Star History <a href="https://star-history.com/#NiuTrans/ABigSurvey&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=HqWu-HITCS/Awesome-LLM-Survey&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=HqWu-HITCS/Awesome-LLM-Survey&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=HqWu-HITCS/Awesome-LLM-Survey&type=Date" /> </picture> </a> --> <!-- ## ⭐️ Star History [![Star History Chart](https://api.star-history.com/svg?repos=NiuTrans/ABigSurvey&type=Date)](https://star-history.com/#NiuTrans/ABigSurvey&Date) --> <!-- ## Team Members The project is maintained by *Junhao Ruan*$^{[1]}$, *Long Meng*$^{[1]}$, *Weiqiao Shan*$^{[1]}$, *Tong Xiao*, *Jingbo Zhu* *Natural Language Processing Lab., School of Computer Science and Engineering, Northeastern University* *NiuTrans Research* Please feel free to contact us if you have any questions (libei_neu [at] outlook.com). -->

Acknowledgements

We would like to thank the people who have contributed to this project. The core contributors are

Junhao Ruan, Long Meng, Weiqiao Shan, Tong Xiao, Jingbo Zhu