Home

Awesome

Awesome-LLM4IE-Papers

🔥🔥🔥 The article has been accepted by Frontiers of Computer Science (FCS).


Awesome papers about generative Information extraction using LLMs

<p align="center" width="80%"> <img src="./image/intro.png" style="width: 50%"> </p>

The organization of papers is discussed in our survey: Large Language Models for Generative Information Extraction: A Survey.

If you find any relevant academic papers that have not been included in our research, please submit a request for an update. We welcome contributions from everyone.

If any suggestions or mistakes, please feel free to let us know via email at derongxu@mail.ustc.edu.cn and chenweicw@mail.ustc.edu.cn. We appreciate your feedback and help in improving our work.

If you find our survey useful for your research, please cite the following paper:

@article{xu2024large,
  title={Large language models for generative information extraction: A survey},
  author={Xu, Derong and Chen, Wei and Peng, Wenjun and Zhang, Chao and Xu, Tong and Zhao, Xiangyu and Wu, Xian and Zheng, Yefeng and Wang, Yang and Chen, Enhong},
  journal={Frontiers of Computer Science},
  volume={18},
  number={6},
  pages={186357},
  year={2024},
  publisher={Springer}
}

📒 Table of Contents

💡 News

Information Extraction tasks

A taxonomy by various tasks.

Named Entity Recognition

Models targeting only ner tasks.

Entity Typing

PaperVenueDateCode
Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity TypingEMNLP Findings2023-12GitHub
Generative Entity Typing with Curriculum LearningEMNLP2022-12GitHub

Entity Identification & Typing

PaperVenueDateCode
Granular Entity Mapper: Advancing Fine-grained Multimodal Named Entity Recognition and GroundingEMNLP Findings2024
Double-Checker: Large Language Model as a Checker for Few-shot Named Entity RecognitionEMNLP Findings2024GitHub
VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language ModelsACL2024GitHub
ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language ModelsACL Findings2024GitHub
Rethinking Negative Instances for Generative Named Entity RecognitionACL Findings2024GitHub
LLMs as Bridges: Reformulating Grounded Multimodal Named Entity RecognitionACL Findings2024GitHub
RT: a Retrieving and Chain-of-Thought framework for few-shot medical named entity recognitionOthers2024-05GitHub
P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language ModelsArxiv2024-06GitHub
Astro-NER -- Astronomy Named Entity Recognition: Is GPT a Good Domain Expert Annotator?Arxiv2024-05
Know-Adapter: Towards Knowledge-Aware Parameter-Efficient Transfer Learning for Few-shot Named Entity RecognitionCOLING2024
ToNER: Type-oriented Named Entity Recognition with Generative Language ModelCOLING2024
CHisIEC: An Information Extraction Corpus for Ancient Chinese HistoryCOLING2024GitHub
Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language ModelsOthers2024-04
LTNER: Large Language Model Tagging for Named Entity Recognition with Contextualized Entity MarkingArxiv2024-04GitHub
Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language ModelsOthers2024-04
Knowledge-Enriched Prompt for Low-Resource Named Entity RecognitionTALLIP2024-04
VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity RecognitionArxiv2024-04GitHub
LLMs in Biomedicine: A study on clinical Named Entity RecognitionArxiv2024-04
Out of Sesame Street: A Study of Portuguese Legal Named Entity Recognition Through In-Context LearningResearchGate2024-04
Mining experimental data from Materials Science literature with Large Language Models: an evaluation studyArxiv2024-04GitHub
LinkNER: Linking Local Named Entity Recognition Models to Large Language Models using UncertaintyWWW2024
Self-Improving for Zero-Shot Named Entity Recognition with Large Language ModelsNAACL Short2024GitHub
On-the-fly Definition Augmentation of LLMs for Biomedical NERNAACL2024GitHub
MetaIE: Distilling a Meta Model from LLM for All Kinds of Information Extraction TasksArxiv2024-03GitHub
Distilling Named Entity Recognition Models for Endangered Species from Large Language ModelsArxiv2024-03
Augmenting NER Datasets with LLMs: Towards Automated and Refined AnnotationArxiv2024-03
ConsistNER: Towards Instructive NER Demonstrations for LLMs with the Consistency of Ontology and ContextAAAI2024
Embedded Named Entity Recognition using Probing ClassifiersArxiv2024-03GitHub
In-Context Learning for Few-Shot Nested Named Entity RecognitionArxiv2024-02
LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named Entity RecognitionArxiv2024-02
Structured information extraction from scientific text with large language modelsNature Communications2024-02GitHub
NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated DataArxiv2024-02
A Simple but Effective Approach to Improve Structured Language Model Output for Information ExtractionArxiv2024-02
PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity RecognitionArxiv2024-02
Small Language Model Is a Good Guide for Large Language Model in Chinese Entity Relation ExtractionArxiv2024-02
C-ICL: Contrastive In-context Learning for Information ExtractionArxiv2024-02
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity RecognitionICLR2024GitHub
Improving Large Language Models for Clinical Named Entity Recognition via Prompt EngineeringArxiv2024-01GitHub
2INER: Instructive and In-Context Learning on Few-Shot Named Entity RecognitionEMNLP Findings2023-12
In-context Learning for Few-shot Multimodal Named Entity RecognitionEMNLP Findings2023-12
Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!EMNLP Findings2023-12GitHub
Learning to Rank Context for Named Entity Recognition Using a Synthetic DatasetEMNLP2023-12GitHub
LLMaAA: Making Large Language Models as Active AnnotatorsEMNLP Findings2023-12GitHub
Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined KnowledgeEMNLP Findings2023-12GitHub
GLiNER: Generalist Model for Named Entity Recognition using Bidirectional TransformerArxiv2023-11GitHub
GPT Struct Me: Probing GPT Models on Narrative Entity ExtractionWI-IAT2023-10GitHub
GPT-NER: Named Entity Recognition via Large Language ModelsArxiv2023-10GitHub
Prompt-NER: Zero-shot Named Entity Recognition in Astronomy Literature via Large Language ModelsArxiv2023-10
Inspire the Large Language Model by External Knowledge on BioMedical Named Entity RecognitionArxiv2023-09
One Model for All Domains: Collaborative Domain-Prefx Tuning for Cross-Domain NERIJCAI2023-09GitHub
Chain-of-Thought Prompt Distillation for Multimodal Named Entity Recognition and Multimodal Relation ExtractionArxiv2023-08
Learning In-context Learning for Named Entity Recognition ACL2023-07GitHub
Debiasing Generative Named Entity Recognition by Calibrating Sequence LikelihoodACL Short2023-07
Entity-to-Text based Data Augmentation for various Named Entity Recognition TasksACL Findings2023-07
Large Language Models as Instructors: A Study on Multilingual Clinical Entity ExtractionBioNLP2023-07GitHub
NAG-NER: a Unified Non-Autoregressive Generation Framework for Various NER TasksACL Industry2023-07
Unified Named Entity Recognition as Multi-Label Sequence GenerationIJCNN2023-06
PromptNER : Prompting For Named Entity RecognitionArxiv2023-06
Does Synthetic Data Generation of LLMs Help Clinical Text Mining?Arxiv2023-04
Unified Text Structuralization with Instruction-tuned Language ModelsArxiv2023-03
Structured information extraction from complex scientific text with fine-tuned large language modelsArxiv2022-12Demo
LightNER: A Lightweight Tuning Paradigm for Low-resource NER via Pluggable PromptingCOLING2022-10GitHub
De-bias for generative extraction in unified NER taskACL2022-05
InstructionNER: A Multi-Task Instruction-Based Generative Framework for Few-shot NERArxiv2022-03
Document-level Entity-based Extraction as Template GenerationEMNLP2021-11GitHub
A Unified Generative Framework for Various NER SubtasksACL2021-08GitHub
Template-Based Named Entity Recognition Using BARTACL Findings2021-08GitHub

Relation Extraction

Models targeting only RE tasks.

Relation Classification

PaperVenueDateCode
Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language ModelsOthers2024-04
CRE-LLM: A Domain-Specific Chinese Relation Extraction Framework with Fine-tuned Large Language ModelArxiv2024-04GitHub
Recall, Retrieve and Reason: Towards Better In-Context Relation ExtractionIJCAI2024-04
Empirical Analysis of Dialogue Relation Extraction with Large Language ModelsIJCAI2024-04
Meta In-Context Learning Makes Large Language Models Better Zero and Few-Shot Relation ExtractorsIJCAI2024-04
Retrieval-Augmented Generation-based Relation ExtractionArxiv2024-04GitHub
Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point LocationsArxiv2024-04
STAR: Boosting Low-Resource Information Extraction by Structure-to-Text Data Generation with Large Language ModelsAAAI2024-03
Grasping the Essentials: Tailoring Large Language Models for Zero-Shot Relation ExtractionArxiv2024-02
Chain of Thought with Explicit Evidence Reasoning for Few-shot Relation ExtractionEMNLP Findings2023-12
GPT-RE: In-context Learning for Relation Extraction using Large Language ModelsEMNLP2023-12GitHub
Guideline Learning for In-context Information ExtractionEMNLP2023-12
Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!EMNLP Findings2023-12GitHub
LLMaAA: Making Large Language Models as Active AnnotatorsEMNLP Findings2023-12GitHub
Improving Unsupervised Relation Extraction by Augmenting Diverse Sentence PairsEMNLP2023-12GitHub
Revisiting Large Language Models as Zero-shot Relation ExtractorsEMNLP Findings2023-12
Mastering the Task of Open Information Extraction with Large Language Models and Consistent Reasoning EnvironmentArxiv2023-10
Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation ExtractorsACL Findings2023-07GitHub
How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?ACL Workshop2023-07GitHub
Sequence generation with label augmentation for relation extractionAAAI2023-06GitHub
Does Synthetic Data Generation of LLMs Help Clinical Text Mining?Arxiv2023-04
DORE: Document Ordered Relation Extraction based on Generative FrameworkEMNLP Findings2022-12
REBEL: Relation Extraction By End-to-end Language generationEMNLP Findings2021-11GitHub

Relation Triplet

PaperVenueDateCode
ERA-CoT: Improving Chain-of-Thought through Entity Relationship AnalysisACL2024GitHub
AutoRE: Document-Level Relation Extraction with Large Language ModelsACL Demos2024GitHub
Meta In-Context Learning Makes Large Language Models Better Zero and Few-Shot Relation ExtractorsIJCAI2024-04
Consistency Guided Knowledge Retrieval and Denoising in LLMs for Zero-shot Document-level Relation Triplet ExtractionWWW2024
Improving Recall of Large Language Models: A Model Collaboration Approach for Relational Triple ExtractionCOLING2024GitHub
Unlocking Instructive In-Context Learning with Tabular Prompting for Relational Triple ExtractionCOLING2024
A Simple but Effective Approach to Improve Structured Language Model Output for Information ExtractionArxiv2024-02
Structured information extraction from scientific text with large language modelsNature Communications2024-02GitHub
Document-Level In-Context Few-Shot Relation Extraction via Pre-Trained Language ModelsArxiv2024-02GitHub
Small Language Model Is a Good Guide for Large Language Model in Chinese Entity Relation ExtractionArxiv2024-02
Efficient Data Learning for Open Information Extraction with Pre-trained Language ModelsEMNLP Findings2023-12
Mastering the Task of Open Information Extraction with Large Language Models and Consistent Reasoning EnvironmentArxiv2023-10
Unified Text Structuralization with Instruction-tuned Language ModelsArxiv2023-03
Document-level Entity-based Extraction as Template GenerationEMNLP2021-11GitHub

Relation Strict

PaperVenueDateCode
MetaIE: Distilling a Meta Model from LLM for All Kinds of Information Extraction TasksArxiv2024-03GitHub
Distilling Named Entity Recognition Models for Endangered Species from Large Language ModelsArxiv2024-03
CHisIEC: An Information Extraction Corpus for Ancient Chinese HistoryCOLING2024-03GitHub
An Autoregressive Text-to-Graph Framework for Joint Entity and Relation ExtractionAAAI2024-03GitHub
C-ICL: Contrastive In-context Learning for Information ExtractionArxiv2024-02
REBEL: Relation Extraction By End-to-end Language generationEMNLP Findings2021-11GitHub

Event Extraction

Models targeting only EE tasks.

Event Detection

PaperVenueDateCode
Improving Event Definition Following For Zero-Shot Event DetectionArxiv2024-03
Mastering the Task of Open Information Extraction with Large Language Models and Consistent Reasoning EnvironmentArxiv2023-10
Unified Text Structuralization with Instruction-tuned Language ModelsArxiv2023-03
Unleash GPT-2 Power for Event DetectionACL2021-08

Event Argument Extraction

PaperVenueDateCode
LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument ExtractionACL2024GitHub
Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument ExtractionACL Findings2024GitHub
KeyEE: Enhancing Low-Resource Generative Event Extraction with Auxiliary Keyword Sub-PromptOthers2024-04GitHub
MetaIE: Distilling a Meta Model from LLM for All Kinds of Information Extraction TasksArxiv2024-03GitHub
Leveraging ChatGPT in Pharmacovigilance Event Extraction: An Empirical StudyEACL2024-02GitHub
ULTRA: Unleash LLMs' Potential for Event Argument Extraction through Hierarchical Modeling and Pair-wise RefinementArxiv2024-01
Context-Aware Prompt for Generation-based Event Argument Extraction with Diffusion ModelsCIKM2023-10
Contextualized Soft Prompts for Extraction of Event ArgumentsACL Findings2023-07
AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction ModelACL2023-07GitHub
Code4Struct: Code Generation for Few-Shot Event Structure PredictionACL2023-07GitHub
Event Extraction as Question Generation and AnsweringACL short2023-07GitHub
Global Constraints with Prompting for Zero-Shot Event Argument ClassificationEACL Findings2023-05
Prompt for extraction? PAIE: prompting argument interaction for event argument extractionACL2022-05GitHub

Event Detection & Argument Extraction

PaperVenueDateCode
TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event ExtractionACL Findings2024GitHub
EventRL: Enhancing Event Extraction with Outcome Supervision for Large Language ModelsArxiv2024-02
Guideline Learning for In-context Information ExtractionEMNLP2023-12
DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event ExtractionEMNLP Findings2023-12GitHub
Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!EMNLP Findings2023-12GitHub
DICE: Data-Efficient Clinical Event Extraction with Generative ModelsACL2023-07GitHub
A Monte Carlo Language Model Pipeline for Zero-Shot Sociopolitical Event ExtractionNeurIPS Workshop2023-10
STAR: Boosting Low-Resource Information Extraction by Structure-to-Text Data Generation with Large Language ModelsAAAI2024-03
DEGREE: A Data-Efficient Generative Event Extraction ModelNAACL2022-07GitHub
ClarET: Pre-training a correlation-aware context-to-event transformer for event-centric generation and classificationACL2022-05GitHub
Dynamic prefix-tuning for generative template-based event extractionACL2022-05
Text2event: Controllable sequence-to- structure generation for end-to-end event extractionACL2021-08GitHub
Document-level event argument extraction by conditional generationNAACL2021-06GitHub

Universal Information Extraction

Unified models targeting multiple IE tasks.

NL-LLMs based

PaperVenueDateCode
Diluie: constructing diverse demonstrations of in-context learning with large language model for unified information extractionOthers2024-04GitHub
ChatUIE: Exploring Chat-based Unified Information Extraction using Large Language ModelsCOLING2024
YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information ExtractionArxiv2024-04
Set Learning for Generative Information ExtractionEMNLP2023-12
GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement EffectArxiv2023-11
InstructUIE: Multi-task Instruction Tuning for Unified Information ExtractionArxiv2023-04GitHub
Zero-Shot Information Extraction via Chatting with ChatGPTArxiv2023-02GitHub
GenIE: Generative Information ExtractionNAACL2022-07GitHub
DEEPSTRUCT: Pretraining of Language Models for Structure PredictionACL Findings2022-05GitHub
Unified Structure Generation for Universal Information ExtractionACL2022-05GitHub
Structured prediction as translation between augmented natural languagesICLR2021-01GitHub

Code-LLMs based

PaperVenueDateCode
KnowCoder: Coding Structured Knowledge into LLMs for Universal Information ExtractionACL2024GitHub
GoLLIE: Annotation Guidelines improve Zero-Shot Information-ExtractionICLR2024GitHub
Retrieval-Augmented Code Generation for Universal Information ExtractionArxiv2023-11
CODEIE: Large Code Generation Models are Better Few-Shot Information ExtractorsACL2023-07GitHub
CodeKGC: Code Language Model for Generative Knowledge Graph ConstructionACM TALLIP2024-03GitHub

Information Extraction Techniques

A taxonomy by techniques.

Supervised Fine-tuning

PaperVenueDateCode
Rethinking Negative Instances for Generative Named Entity RecognitionACL Findings2024GitHub
Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument ExtractionACL Findings2024GitHub
AutoRE: Document-Level Relation Extraction with Large Language ModelsACL Demos2024GitHub
Recall, Retrieve and Reason: Towards Better In-Context Relation ExtractionIJCAI2024-04
Empirical Analysis of Dialogue Relation Extraction with Large Language ModelsIJCAI2024-04
An Autoregressive Text-to-Graph Framework for Joint Entity and Relation ExtractionAAAI2024GitHub
Improving Recall of Large Language Models: A Model Collaboration Approach for Relational Triple ExtractionCOLING2024GitHub
ToNER: Type-oriented Named Entity Recognition with Generative Language ModelCOLING2024
CHisIEC: An Information Extraction Corpus for Ancient Chinese HistoryCOLING2024GitHub
KeyEE: Enhancing Low-Resource Generative Event Extraction with Auxiliary Keyword Sub-PromptOthers2024-04GitHub
VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity RecognitionArxiv2024-04GitHub
LLMs in Biomedicine: A study on clinical Named Entity RecognitionArxiv2024-04
Mining experimental data from Materials Science literature with Large Language Models: an evaluation studyArxiv2024-04GitHub
CRE-LLM: A Domain-Specific Chinese Relation Extraction Framework with Fine-tuned Large Language ModelArxiv2024-04GitHub
Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point LocationsArxiv2024-04
Improving Event Definition Following For Zero-Shot Event DetectionArxiv2024-03
Embedded Named Entity Recognition using Probing ClassifiersArxiv2024-03GitHub
EventRL: Enhancing Event Extraction with Outcome Supervision for Large Language ModelsArxiv2024-02
Structured information extraction from scientific text with large language modelsNature Communications2024-02GitHub
PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity RecognitionArxiv2024-02
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity RecognitionICLR2024GitHub
GoLLIE: Annotation Guidelines improve Zero-Shot Information-ExtractionICLR2024GitHub
Set Learning for Generative Information ExtractionEMNLP2023-12
Efficient Data Learning for Open Information Extraction with Pre-trained Language ModelsEMNLP Findings2023-12
DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event ExtractionEMNLP Findings2023-12GitHub
Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity TypingEMNLP Findings2023-12
GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement EffectArxiv2023-11
GLiNER: Generalist Model for Named Entity Recognition using Bidirectional TransformerArxiv2023-11GitHub
Context-Aware Prompt for Generation-based Event Argument Extraction with Diffusion ModelsCIKM2023-10
Contextualized Soft Prompts for Extraction of Event ArgumentsACL Findings2023-07
AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction ModelACL2023-07GitHub
Debiasing Generative Named Entity Recognition by Calibrating Sequence LikelihoodACL short2023-07
DICE: Data-Efficient Clinical Event Extraction with Generative ModelsACL2023-07GitHub
Event Extraction as Question Generation and AnsweringACL short2023-07GitHub
NAG-NER: a Unified Non-Autoregressive Generation Framework for Various NER TasksACL Industry2023-07
Sequence generation with label augmentation for relation extractionAAAI2023-06GitHub
Unified Named Entity Recognition as Multi-Label Sequence GenerationIJCNN2023-06
InstructUIE: Multi-task Instruction Tuning for Unified Information ExtractionArxiv2023-04GitHub
Structured information extraction from complex scientific text with fine-tuned large language modelsArxiv2022-12Demo
Generative Entity Typing with Curriculum LearningEMNLP2022-12GitHub
DORE: Document Ordered Relation Extraction based on Generative FrameworkEMNLP Findings2022-12
LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language ModelNeurIPS2022-10GitHub
LightNER: A Lightweight Tuning Paradigm for Low-resource NER via Pluggable PromptingCOLING2022-10GitHub
GenIE: Generative Information ExtractionNAACL2022-07GitHub
DEGREE: A Data-Efficient Generative Event Extraction ModelNAACL2022-07GitHub
ClarET: Pre-training a correlation-aware context-to-event transformer for event-centric generation and classificationACL2022-05GitHub
DEEPSTRUCT: Pretraining of Language Models for Structure PredictionACL Findings2022-05GitHub
Dynamic prefix-tuning for generative template-based event extractionACL2022-05
Prompt for extraction? PAIE: prompting argument interaction for event argument extractionACL2022-05GitHub
Unified Structure Generation for Universal Information ExtractionACL2022-05GitHub
De-bias for generative extraction in unified NER taskACL2022-05
Document-level Entity-based Extraction as Template GenerationEMNLP2021-11GitHub
REBEL: Relation Extraction By End-to-end Language generationEMNLP Findings2021-11GitHub
A Unified Generative Framework for Various NER SubtasksACL2021-08GitHub
Template-Based Named Entity Recognition Using BARTACL Findings2021-08GitHub
Text2event: Controllable sequence-to- structure generation for end-to-end event extractionACL2021-08GitHub
Document-level event argument extraction by conditional generationNAACL2021-06GitHub
Structured prediction as translation between augmented natural languagesICLR2021-01GitHub

Few-shot

Few-shot Fine-tuning

PaperVenueDateCode
Diluie: constructing diverse demonstrations of in-context learning with large language model for unified information extractionOthers2024-04GitHub
KeyEE: Enhancing Low-Resource Generative Event Extraction with Auxiliary Keyword Sub-PromptOthers2024-04GitHub
Meta In-Context Learning Makes Large Language Models Better Zero and Few-Shot Relation ExtractorsIJCAI2024-04
On-the-fly Definition Augmentation of LLMs for Biomedical NERNAACL2024-03GitHub
DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event ExtractionEMNLP Findings2023-12GitHub
One Model for All Domains: Collaborative Domain-Prefx Tuning for Cross-Domain NERIJCAI2023-09GitHub
LightNER: A Lightweight Tuning Paradigm for Low-resource NER via Pluggable PromptingCOLING2022-10GitHub
Unified Structure Generation for Universal Information ExtractionACL2022-05GitHub
InstructionNER: A Multi-Task Instruction-Based Generative Framework for Few-shot NERArxiv2022-03
Template-Based Named Entity Recognition Using BARTACL Findings2021-08GitHub
Structured prediction as translation between augmented natural languagesICLR2021-01GitHub

In-Context Learning

PaperVenueDateCode
TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event ExtractionACL Findings2024GitHub
RT: a Retrieving and Chain-of-Thought framework for few-shot medical named entity recognitionOthers2024-05GitHub
P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language ModelsArxiv2024-06GitHub
LTNER: Large Language Model Tagging for Named Entity Recognition with Contextualized Entity MarkingArxiv2024-04GitHub
Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language ModelsOthers2024-04
LLMs in Biomedicine: A study on clinical Named Entity RecognitionArxiv2024-04
Out of Sesame Street: A Study of Portuguese Legal Named Entity Recognition Through In-Context LearningResearchGate2024-04
Mining experimental data from Materials Science literature with Large Language Models: an evaluation studyArxiv2024-04GitHub
Empirical Analysis of Dialogue Relation Extraction with Large Language ModelsIJCAI2024-04
Self-Improving for Zero-Shot Named Entity Recognition with Large Language ModelsNAACL Short2024GitHub
ConsistNER: Towards Instructive NER Demonstrations for LLMs with the Consistency of Ontology and ContextAAAI2024
On-the-fly Definition Augmentation of LLMs for Biomedical NERNAACL2024GitHub
CHisIEC: An Information Extraction Corpus for Ancient Chinese HistoryCOLING2024GitHub
Unlocking Instructive In-Context Learning with Tabular Prompting for Relational Triple ExtractionCOLING2024
CodeKGC: Code Language Model for Generative Knowledge Graph ConstructionACM TALLIP2024-03GitHub
Document-Level In-Context Few-Shot Relation Extraction via Pre-Trained Language ModelsArxiv2024-02GitHub
In-Context Learning for Few-Shot Nested Named Entity RecognitionArxiv2024-02
Leveraging ChatGPT in Pharmacovigilance Event Extraction: An Empirical StudyEACL2024-02GitHub
Heuristic-Driven Link-of-Analogy Prompting: Enhancing Large Language Models for Document-Level Event Argument ExtractionArxiv2024-02
LinkNER: Linking Local Named Entity Recognition Models to Large Language Models using UncertaintyWWW2024
Small Language Model Is a Good Guide for Large Language Model in Chinese Entity Relation ExtractionArxiv2024-02
C-ICL: Contrastive In-context Learning for Information ExtractionArxiv2024-02
Improving Large Language Models for Clinical Named Entity Recognition via Prompt EngineeringArxiv2024-01GitHub
Chain of Thought with Explicit Evidence Reasoning for Few-shot Relation ExtractionEMNLP Findings2023-12
GPT-RE: In-context Learning for Relation Extraction using Large Language ModelsEMNLP2023-12GitHub
Guideline Learning for In-context Information ExtractionEMNLP2023-12
Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!EMNLP Findings2023-12GitHub
Retrieval-Augmented Code Generation for Universal Information ExtractionArxiv2023-11
Mastering the Task of Open Information Extraction with Large Language Models and Consistent Reasoning EnvironmentArxiv2023-10
GPT-NER: Named Entity Recognition via Large Language ModelsArxiv2023-10GitHub
GPT Struct Me: Probing GPT Models on Narrative Entity ExtractionWI-IAT2023-10GitHub
Learning In-context Learning for Named Entity Recognition ACL2023-07GitHub
Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation ExtractorsACL Findings2023-07GitHub
Code4Struct: Code Generation for Few-Shot Event Structure PredictionACL2023-07GitHub
CODEIE: Large Code Generation Models are Better Few-Shot Information ExtractorsACL2023-07GitHub
How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?ACL Workshop2023-07GitHub
PromptNER : Prompting For Named Entity RecognitionArxiv2023-06GitHub
Unified Text Structuralization with Instruction-tuned Language ModelsArxiv2023-03

Zero-shot

Zero-shot Prompting

PaperVenueDateCode
ERA-CoT: Improving Chain-of-Thought through Entity Relationship AnalysisACL2024GitHub
Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language ModelsOthers2024-04
Mining experimental data from Materials Science literature with Large Language Models: an evaluation studyArxiv2024-04GitHub
Empirical Analysis of Dialogue Relation Extraction with Large Language ModelsIJCAI2024-04
Retrieval-Augmented Generation-based Relation ExtractionArxiv2024-04GitHub
Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point LocationsArxiv2024-04
Meta In-Context Learning Makes Large Language Models Better Zero and Few-Shot Relation ExtractorsIJCAI2024-04
Self-Improving for Zero-Shot Named Entity Recognition with Large Language ModelsNAACL Short2024GitHub
CodeKGC: Code Language Model for Generative Knowledge Graph ConstructionACM TALLIP2024-03GitHub
On-the-fly Definition Augmentation of LLMs for Biomedical NERNAACL2024-03GitHub
Leveraging ChatGPT in Pharmacovigilance Event Extraction: An Empirical StudyEACL2024-02GitHub
A Simple but Effective Approach to Improve Structured Language Model Output for Information ExtractionArxiv2024-02
Small Language Model Is a Good Guide for Large Language Model in Chinese Entity Relation ExtractionArxiv2024-02
Improving Large Language Models for Clinical Named Entity Recognition via Prompt EngineeringArxiv2024-01GitHub
Improving Unsupervised Relation Extraction by Augmenting Diverse Sentence PairsEMNLP2023-12GitHub
Prompt-NER: Zero-shot Named Entity Recognition in Astronomy Literature via Large Language ModelsArxiv2023-10
Revisiting Large Language Models as Zero-shot Relation ExtractorsEMNLP Findings2023-10
Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation ExtractorsACL Findings2023-07GitHub
Code4Struct: Code Generation for Few-Shot Event Structure PredictionACL2023-07GitHub
A Monte Carlo Language Model Pipeline for Zero-Shot Sociopolitical Event ExtractionNeurIPS Workshop2023-10
Global Constraints with Prompting for Zero-Shot Event Argument ClassificationEACL Findings2023-05
Zero-Shot Information Extraction via Chatting with ChatGPTArxiv2023-02GitHub

Cross-Domain Learning

PaperVenueDateCode
KnowCoder: Coding Structured Knowledge into LLMs for Universal Information ExtractionACL2024GitHub
VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language ModelsACL2024GitHub
Rethinking Negative Instances for Generative Named Entity RecognitionACL Findings2024GitHub
IEPile: Unearthing Large-Scale Schema-Based Information Extraction CorpusACL Short2024GitHub
Diluie: constructing diverse demonstrations of in-context learning with large language model for unified information extractionOthers2024-04GitHub
Advancing Entity Recognition in Biomedicine via Instruction Tuning of Large Language ModelsBioinformatics2024-03GitHub
ChatUIE: Exploring Chat-based Unified Information Extraction using Large Language ModelsCOLING2024
ULTRA: Unleash LLMs' Potential for Event Argument Extraction through Hierarchical Modeling and Pair-wise RefinementArxiv2024-01
YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information ExtractionArxiv2024-04
GoLLIE: Annotation Guidelines improve Zero-Shot Information-ExtractionICLR2024GitHub
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity RecognitionICLR2024GitHub
InstructUIE: Multi-task Instruction Tuning for Unified Information ExtractionArxiv2023-04GitHub
DEEPSTRUCT: Pretraining of Language Models for Structure PredictionACL Findings2022-05GitHub
Multilingual generative language models for zero-shot cross-lingual event argument extractionACL2022-05GitHub

Cross-Type Learning

PaperVenueDateCode
Document-level event argument extraction by conditional generationNAACL2021-06GitHub

Data Augmentation

Data Annotation

PaperVenueDateCode
Astro-NER -- Astronomy Named Entity Recognition: Is GPT a Good Domain Expert Annotator?Arxiv2024-05
MetaIE: Distilling a Meta Model from LLM for All Kinds of Information Extraction TasksArxiv2024-03GitHub
Augmenting NER Datasets with LLMs: Towards Automated and Refined AnnotationArxiv2024-03
NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated DataArxiv2024-02
Leveraging ChatGPT in Pharmacovigilance Event Extraction: An Empirical StudyEACL2024-02GitHub
LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named Entity RecognitionArxiv2024-02
LLMaAA: Making Large Language Models as Active AnnotatorsEMNLP Findings2023-12GitHub
Improving Unsupervised Relation Extraction by Augmenting Diverse Sentence PairsEMNLP2023-12GitHub
Semi-automatic Data Enhancement for Document-Level Relation Extraction with Distant Supervision from Large Language ModelsEMNLP2023-12GitHub
How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?ACL Workshop2023-07GitHub
Large Language Models as Instructors: A Study on Multilingual Clinical Entity ExtractionbioNLP Workshop2023-07GitHub
Does Synthetic Data Generation of LLMs Help Clinical Text Mining?Arxiv2023-04
Unleash GPT-2 Power for Event DetectionACL2021-08

Knowledge Retrieval

PaperVenueDateCode
LLMs as Bridges: Reformulating Grounded Multimodal Named Entity RecognitionACL Findings2024GitHub
Consistency Guided Knowledge Retrieval and Denoising in LLMs for Zero-shot Document-level Relation Triplet ExtractionWWW2024
Learning to Rank Context for Named Entity Recognition Using a Synthetic DatasetEMNLP2023-12GitHub
Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined KnowledgeEMNLP Findings2023-12GitHub
Chain-of-Thought Prompt Distillation for Multimodal Named Entity Recognition and Multimodal Relation ExtractionArxiv2023-08

Inverse Generation

PaperVenueDateCode
Distilling Named Entity Recognition Models for Endangered Species from Large Language ModelsArxiv2024-03
Improving Event Definition Following For Zero-Shot Event DetectionArxiv2024-03
ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language ModelsACL Findings2024GitHub
Grasping the Essentials: Tailoring Large Language Models for Zero-Shot Relation ExtractionArxiv2024-02
Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information ExtractionEMNLP2023-12GitHub
Entity-to-Text based Data Augmentation for various Named Entity Recognition TasksACL Findings2023-07
Event Extraction as Question Generation and AnsweringACL Short2023-07GitHub
STAR: Boosting Low-Resource Event Extraction by Structure-to-Text Data Generation with Large Language ModelsAAAI2024-03

Synthetic Datasets for Instruction-tuning

PaperVenueDateCode
Rethinking Negative Instances for Generative Named Entity RecognitionACL Findings2024GitHub
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity RecognitionICLR2024-01GitHub
GLiNER: Generalist Model for Named Entity Recognition using Bidirectional TransformerArxiv2023-11GitHub
Chain-of-Thought Prompt Distillation for Multimodal Named Entity Recognition and Multimodal Relation ExtractionArxiv2023-08

Prompts Design

Question Answer

PaperVenueDateCode
Knowledge-Enriched Prompt for Low-Resource Named Entity RecognitionTALLIP2024-04
Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language ModelsOthers2024-04
Revisiting Large Language Models as Zero-shot Relation ExtractorsEMNLP Findings2023-12
Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation ExtractorsACL Findings2023-07GitHub
Zero-Shot Information Extraction via Chatting with ChatGPTArxiv2023-02GitHub

Chain of Thought

PaperVenueDateCode
RT: a Retrieving and Chain-of-Thought framework for few-shot medical named entity recognitionOthers2024-05GitHub
Inspire the Large Language Model by External Knowledge on BioMedical Named Entity RecognitionArxiv2023-09
Chain-of-Thought Prompt Distillation for Multimodal Named Entity Recognition and Multimodal Relation ExtractionArxiv2023-08
Revisiting Relation Extraction in the era of Large Language ModelsACL2023-07GitHub
Zero-shot Temporal Relation Extraction with ChatGPTBioNLP2023-07
PromptNER : Prompting For Named Entity RecognitionArxiv2023-06

Self-Improvement

PaperVenueDateCode
ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language ModelsACL Findings2024GitHub
ULTRA: Unleash LLMs' Potential for Event Argument Extraction through Hierarchical Modeling and Pair-wise RefinementArxiv2024-01
Self-Improving for Zero-Shot Named Entity Recognition with Large Language ModelsNAACL Short2024GitHub

Constrained Decoding Generation

PaperVenueDateCode
An Autoregressive Text-to-Graph Framework for Joint Entity and Relation ExtractionAAAI2024-03GitHub
Grammar-Constrained Decoding for Structured NLP Tasks without FinetuningEMNLP2024-01GitHub
DORE: Document Ordered Relation Extraction based on Generative FrameworkEMNLP Findings2022-12
Autoregressive Structured Prediction with Language ModelsEMNLP Findings2022-12GitHub
Unified Structure Generation for Universal Information ExtractionACL2022-05GitHub

Specific Domain

PaperDomainVenueDateCode
Granular Entity Mapper: Advancing Fine-grained Multimodal Named Entity Recognition and GroundingMultimodalEMNLP Findings2024
LLMs as Bridges: Reformulating Grounded Multimodal Named Entity RecognitionMultimodalACL Findings2024GitHub
RT: a Retrieving and Chain-of-Thought framework for few-shot medical named entity recognitionMedicalOthers2024-05GitHub
Astro-NER -- Astronomy Named Entity Recognition: Is GPT a Good Domain Expert Annotator?AstronomyArxiv2024-05
Astronomical Knowledge Entity Extraction in Astrophysics Journal Articles via Large Language ModelsAstronomyOthers2024-04
VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity RecognitionBiomedicalArxiv2024-04GitHub
LLMs in Biomedicine: A study on clinical Named Entity RecognitionBiomedicalArxiv2024-04
Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language ModelsSoftwareOthers2024-04
Out of Sesame Street: A Study of Portuguese Legal Named Entity Recognition Through In-Context LearningLegalResearchGate2024-04
Mining experimental data from Materials Science literature with Large Language Models: an evaluation studyScientificArxiv2024-04GitHub
Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point LocationsAcupuncture PointArxiv2024-04
Advancing Entity Recognition in Biomedicine via Instruction Tuning of Large Language ModelsBiomedicalBioinformatics2024-03GitHub
Distilling Named Entity Recognition Models for Endangered Species from Large Language ModelsEndangered SpeciesArxiv2024-03
CHisIEC: An Information Extraction Corpus for Ancient Chinese HistoryHistoricalCOLING2024-03GitHub
On-the-fly Definition Augmentation of LLMs for Biomedical NERBiomedicalNAACL2024-03GitHub
Improving LLM-Based Health Information Extraction with In-Context LearningHealthOthers2024-03
Structured information extraction from scientific text with large language modelsScientificNat. Commun.2024-02GitHub
Leveraging ChatGPT in Pharmacovigilance Event Extraction: An Empirical StudyPharmacovigilanceEACL2024-02GitHub
Structured information extraction from scientific text with large language modelsScientificNat. Commun.2024-02GitHub
Combining prompt‑based language models and weak supervision for labeling named entity recognition on legal documentsLegalOthers2024-02
Improving Large Language Models for Clinical Named Entity Recognition via Prompt EngineeringClinicalArxiv2024-01GitHub
Impact of Sample Selection on In-Context Learning for Entity Extraction from Scientific WritingScientificEMNLP Findings2023-12GitHub
Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined KnowledgeMultimodalENMLP Findings2023-12GitHub
In-context Learning for Few-shot Multimodal Named Entity RecognitionMultimodalENMLP Findings2023-12
PolyIE: A Dataset of Information Extraction from Polymer Material Scientific LiteraturePolymer MaterialArxiv2023-11GitHub
Prompt-NER: Zero-shot Named Entity Recognition in Astronomy Literature via Large Language ModelsAstronomicalArxiv2023-10
Inspire the Large Language Model by External Knowledge on BioMedical Named Entity RecognitionBiomedicalArxiv2023-09
Chain-of-Thought Prompt Distillation for Multimodal Named Entity Recognition and Multimodal Relation ExtractionMultimodalArxiv2023-08
DICE: Data-Efficient Clinical Event Extraction with Generative ModelsClinicalACL2023-07GitHub
How far is Language Model from 100% Few-shot Named Entity Recognition in Medical DomainMedicalArxiv2023-07GitHub
Large Language Models as Instructors: A Study on Multilingual Clinical Entity ExtractionMultilingual / ClinicalBioNLP2023-07GitHub
Does Synthetic Data Generation of LLMs Help Clinical Text Mining?ClinicalArxiv2023-04
Yes but.. Can ChatGPT Identify Entities in Historical DocumentsHistoricalJCDL2023-03
Zero-shot Clinical Entity Recognition using ChatGPTClinicalArxiv2023-03
Structured information extraction from complex scientific text with fine-tuned large language modelsScientificArxiv2022-12Demo
Multilingual generative language models for zero-shot cross-lingual event argument extractionMultilingualACL2022-05GitHub

Evaluation and Analysis

PaperVenueDateCode
TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event ExtractionACL Findings2024GitHub
IEPile: Unearthing Large-Scale Schema-Based Information Extraction CorpusACL Short2024GitHub
CHisIEC: An Information Extraction Corpus for Ancient Chinese HistoryCOLING2024GitHub
GenRES: Rethinking Evaluation for Generative Relation Extraction in the Era of Large Language ModelsNAACL2024GitHub
Empirical Analysis of Dialogue Relation Extraction with Large Language ModelsIJCAI2024
Astro-NER -- Astronomy Named Entity Recognition: Is GPT a Good Domain Expert Annotator?Arxiv2024-05
Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point LocationsArxiv2024-04
Mining experimental data from Materials Science literature with Large Language Models: an evaluation studyArxiv2024-04GitHub
Distilling Named Entity Recognition Models for Endangered Species from Large Language ModelsArxiv2024-03
LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future OpportunitiesArxiv2024-02GitHub
Few shot clinical entity recognition in three languages: Masked language models outperform LLM promptingArxiv2024-02
Information Extraction from Legal Wills: How Well Does GPT-4 Do?EMNLP Findings2023-12GitHub
Information Extraction in Low-Resource Scenarios: Survey and PerspectiveArxiv2023-12GitHub
Empirical Study of Zero-Shot NER with ChatGPTEMNLP2023-12GitHub
NERetrieve: Dataset for Next Generation Named Entity Recognition and RetrievalEMNLP Findings2023-12GitHub
Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information ExtractionEMNLP2023-12GitHub
PolyIE: A Dataset of Information Extraction from Polymer Material Scientific LiteratureArxiv2023-11GitHub
XNLP: An Interactive Demonstration System for Universal Structured NLPArxiv2023-08Demo
A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical TasksArxiv2023-07
How far is Language Model from 100% Few-shot Named Entity Recognition in Medical DomainArxiv2023-07GitHub
Revisiting Relation Extraction in the era of Large Language ModelsACL2023-07GitHub
Zero-shot Temporal Relation Extraction with ChatGPTBioNLP2023-07
InstructIE: A Chinese Instruction-based Information Extraction DatasetArxiv2023-05GitHub
Is Information Extraction Solved by ChatGPT? An Analysis of Performance, Evaluation Criteria, Robustness and ErrorsArxiv2023-05GitHub
Evaluating ChatGPT's Information Extraction Capabilities: An Assessment of Performance, Explainability, Calibration, and FaithfulnessArxiv2023-04GitHub
Exploring the Feasibility of ChatGPT for Event ExtractionArxiv2023-03
Yes but.. Can ChatGPT Identify Entities in Historical DocumentsJCDL2023-03
Zero-shot Clinical Entity Recognition using ChatGPTArxiv2023-03
Thinking about GPT-3 In-Context Learning for Biomedical IE? Think AgainEMNLP Findings2022-12GitHub
Large Language Models are Few-Shot Clinical Information ExtractorsEMNLP2022-12Huggingface

Project and Toolkit

PaperTypeVenueDateLink
ONEKEProject--Link
TechGPT-2.0: A Large Language Model Project to Solve the Task of Knowledge Graph ConstructionProjectArxiv2024-01Link
CollabKG: A Learnable Human-Machine-Cooperative Information Extraction Toolkit for (Event) Knowledge Graph ConstructionToolkitArxiv2023-07Link

Recently Updated Papers

2024/09/04

PaperVenueDateCode
Timeline-based Sentence Decomposition with In-Context Learning for Temporal Fact ExtractionACL2024-08GitHub
Epidemic Information Extraction for Event-Based Surveillance using Large Language ModelsICICT2024-08
SpeechEE: A Novel Benchmark for Speech Event ExtractionACM MM2024-08GitHub
HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information ExtractionArxiv2024-08
Knowledge AI: Fine-tuning NLP Models for Facilitating Scientific Knowledge Extraction and UnderstandingArxiv2024-08
Target Prompting for Information Extraction with Vision Language ModelArxiv2024-08
Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language ModelsArxiv2024-08GitHub
Utilizing Large Language Models for Named Entity Recognition in Traditional Chinese Medicine against COVID-19 Literature: Comparative StudyArxiv2024-08
CLLMFS: A Contrastive Learning enhanced Large Language Model Framework for Few-Shot Named Entity RecognitionECAI2024-08
LLMs are not Zero-Shot Reasoners for Biomedical Information ExtractionArxiv2024-08
Label Alignment and Reassignment with Generalist Large Language Model for Enhanced Cross-Domain Named Entity RecognitionArxiv2024-07
MMM: Multilingual Mutual Reinforcement Effect Mix Datasets & Test with Open-domain Information Extraction Large Language ModelsArxiv2024-08GitHub
FsPONER: Few-shot Prompt Optimization for Named Entity Recognition in Domain-specific ScenariosECAI2024-07GitHub
Adapting Multilingual LLMs to Low-Resource Languages with Knowledge Graphs via AdaptersKaLLM workshop2024-07GitHub
Show Less, Instruct More: Enriching Prompts with Definitions and Guidelines for Zero-Shot NERArxiv2024-07
Large Language Models Struggle in Token-Level Clinical Named Entity RecognitionAMIA2024-08
GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction TasksArxiv2024-08
Retrieval Augmented Instruction Tuning for Open NER with Large Language ModelsArxiv2024-06GitHub
Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity RecognitionArxiv2024-06GitHub
Fighting Against the Repetitive Training and Sample Dependency Problem in Few-shot Named Entity RecognitionIEEE Access2024-06GitHub
llmNER: (Zero|Few)-Shot Named Entity Recognition, Exploiting the Power of Large Language ModelsArxiv2024-06GitHub
Assessing the Performance of Chinese Open Source Large Language Models in Information Extraction TasksArxiv2024-06

Datasets

* denotes the dataset is multimodal. # refers to the number of categories or sentences.

<table> <thead> <tr> <th align="center">Task</th> <th align="center">Dataset</th> <th align="center">Domain</th> <th align="center">#Class</th> <th align="center">#Train</th> <th align="center">#Val</th> <th align="center">#Test</th> <th align="center">Link</th> </tr> </thead> <tbody> <tr> <td align="center" rowspan="32" ><strong>NER</strong></td> <td align="center">ACE04</td> <td align="center">News</td> <td align="center">7</td> <td align="center">6202</td> <td align="center">745</td> <td align="center">812</td> <td align="center"><a href="https://catalog.ldc.upenn.edu/LDC2005T09">Link</a></td> </tr> <tr> <td align="center">ACE05</td> <td align="center">News</td> <td align="center">7</td> <td align="center">7299</td> <td align="center">971</td> <td align="center">1060</td> <td align="center"><a href="https://catalog.ldc.upenn.edu/LDC2006T06">Link</a></td> </tr> <tr> <td align="center">BC5CDR</td> <td align="center">Biomedical</td> <td align="center">2</td> <td align="center">4560</td> <td align="center">4581</td> <td align="center">4797</td> <td align="center"><a href="https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/">Link</a></td> </tr> <tr> <td align="center">Broad Twitter Corpus</td> <td align="center">Social Media</td> <td align="center">3</td> <td align="center">6338</td> <td align="center">1001</td> <td align="center">2000</td> <td align="center"><a href="https://github.com/GateNLP/broad_twitter_corpus?">Link</a></td> </tr> <tr> <td align="center">CADEC</td> <td align="center">Biomedical</td> <td align="center">1</td> <td align="center">5340</td> <td align="center">1097</td> <td align="center">1160</td> <td align="center"><a href="https://data.csiro.au/collection/csiro:10948?v=3&d=true">Link</a></td> </tr> <tr> <td align="center">CoNLL03</td> <td align="center">News</td> <td align="center">4</td> <td align="center">14041</td> <td align="center">3250</td> <td align="center">3453</td> <td align="center"><a href="https://www.clips.uantwerpen.be/conll2003/ner/">Link</a></td> </tr> <tr> <td align="center">CoNLLpp</td> <td align="center">News</td> <td align="center">4</td> <td align="center">14041</td> <td align="center">3250</td> <td align="center">3453</td> <td align="center"><a href="https://github.com/ZihanWangKi/CrossWeigh">Link</a></td> </tr> <tr> <td align="center">CrossNER-AI</td> <td align="center">Artificial Intelligence</td> <td align="center">14</td> <td align="center">100</td> <td align="center">350</td> <td align="center">431</td> <td align="center" rowspan="5" ><a href="https://github.com/zliucr/CrossNER">Link</a></td> </tr> <tr> <td align="center">CrossNER-Literature</td> <td align="center">Literary</td> <td align="center">12</td> <td align="center">100</td> <td align="center">400</td> <td align="center">416</td> </tr> <tr> <td align="center">CrossNER-Music</td> <td align="center">Musical</td> <td align="center">13</td> <td align="center">100</td> <td align="center">380</td> <td align="center">465</td> </tr> <tr> <td align="center">CrossNER-Politics</td> <td align="center">Political</td> <td align="center">9</td> <td align="center">199</td> <td align="center">540</td> <td align="center">650</td> </tr> <tr> <td align="center">CrossNER-Science</td> <td align="center">Scientific</td> <td align="center">17</td> <td align="center">200</td> <td align="center">450</td> <td align="center">543</td> </tr> <tr> <td align="center">FabNER</td> <td align="center">Scientific</td> <td align="center">12</td> <td align="center">9435</td> <td align="center">2182</td> <td align="center">2064</td> <td align="center"><a href="https://huggingface.co/datasets/DFKI-SLT/fabner">Link</a></td> </tr> <tr> <td align="center">Few-NERD</td> <td align="center">General</td> <td align="center">66</td> <td align="center">131767</td> <td align="center">18824</td> <td align="center">37468</td> <td align="center"><a href="https://github.com/thunlp/Few-NERD">Link</a></td> </tr> <tr> <td align="center">FindVehicle</td> <td align="center">Traffic</td> <td align="center">21</td> <td align="center">21565</td> <td align="center">20777</td> <td align="center">20777</td> <td align="center"><a href="https://github.com/GuanRunwei/VehicleFinder-CTIM">Link</a></td> </tr> <tr> <td align="center">GENIA</td> <td align="center">Biomedical</td> <td align="center">5</td> <td align="center">15023</td> <td align="center">1669</td> <td align="center">1854</td> <td align="center"><a href="https://github.com/ljynlp/W2NER?tab=readme-ov-file#3-dataset">Link</a></td> </tr> <tr> <td align="center">HarveyNER</td> <td align="center">Social Media</td> <td align="center">4</td> <td align="center">3967</td> <td align="center">1301</td> <td align="center">1303</td> <td align="center"><a href="https://github.com/brickee/HarveyNER">Link</a></td> </tr> <tr> <td align="center">MIT-Movie</td> <td align="center">Social Media</td> <td align="center">12</td> <td align="center">9774</td> <td align="center">2442</td> <td align="center">2442</td> <td align="center"><a href="https://tianchi.aliyun.com/dataset/145106">Link</a></td> </tr> <tr> <td align="center">MIT-Restaurant</td> <td align="center">Social Media</td> <td align="center">8</td> <td align="center">7659</td> <td align="center">1520</td> <td align="center">1520</td> <td align="center"><a href="https://tianchi.aliyun.com/dataset/145105">Link</a></td> </tr> <tr> <td align="center">MultiNERD</td> <td align="center">Wikipedia</td> <td align="center">16</td> <td align="center">134144</td> <td align="center">10000</td> <td align="center">10000</td> <td align="center"><a href="https://github.com/Babelscape/multinerd">Link</a></td> </tr> <tr> <td align="center">NCBI</td> <td align="center">Biomedical</td> <td align="center">4</td> <td align="center">5432</td> <td align="center">923</td> <td align="center">940</td> <td align="center"><a href="https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/">Link</a></td> </tr> <tr> <td align="center">OntoNotes 5.0</td> <td align="center">General</td> <td align="center">18</td> <td align="center">59924</td> <td align="center">8528</td> <td align="center">8262</td> <td align="center"><a href="https://catalog.ldc.upenn.edu/LDC2013T19">Link</a></td> </tr> <tr> <td align="center">ShARe13</td> <td align="center">Biomedical</td> <td align="center">1</td> <td align="center">8508</td> <td align="center">12050</td> <td align="center">9009</td> <td align="center"><a href="https://physionet.org/content/shareclefehealth2013/1.0/">Link</a></td> </tr> <tr> <td align="center">ShARe14</td> <td align="center">Biomedical</td> <td align="center">1</td> <td align="center">17404</td> <td align="center">1360</td> <td align="center">15850</td> <td align="center"><a href="https://physionet.org/content/shareclefehealth2014task2/1.0/">Link</a></td> </tr> <tr> <td align="center">SNAP<sup>*<sup></td> <td align="center">Social Media</td> <td align="center">4</td> <td align="center">4290</td> <td align="center">1432</td> <td align="center">1459</td> <td align="center"><a href="https://www.modelscope.cn/datasets/caijiong_sijun/MoRE-processed-data/files">Link</a></td> </tr> <tr> <td align="center">Temporal Twitter Corpus (TTC)</td> <td align="center">Social Meida</td> <td align="center">3</td> <td align="center">10000</td> <td align="center">500</td> <td align="center">1500</td> <td aligh="center"><a href="https://github.com/shrutirij/temporal-twitter-corpus">Link</a></td> </tr> <tr> <td align="center">Tweebank-NER</td> <td align="center">Social Media</td> <td align="center">4</td> <td align="center">1639</td> <td align="center">710</td> <td align="center">1201</td> <td aligh="center"><a href="https://github.com/mit-ccc/TweebankNLP">Link</a></td> </tr> <tr> <td align="center">Twitter2015<sup>*<sup></td> <td align="center">Social Media</td> <td align="center">4</td> <td align="center">4000</td> <td align="center">1000</td> <td align="center">3357</td> <td align="center"><a href="https://www.modelscope.cn/datasets/caijiong_sijun/MoRE-processed-data/files">Link</a></td> </tr> <tr> <td align="center">Twitter2017<sup>*<sup></td> <td align="center">Social Media</td> <td align="center">4</td> <td align="center">3373</td> <td align="center">723</td> <td align="center">723</td> <td align="center"><a href="https://www.modelscope.cn/datasets/caijiong_sijun/MoRE-processed-data/files">Link</a></td> </tr> <tr> <td align="center">TwitterNER7</td> <td align="center">Social Media</td> <td align="center">7</td> <td align="center">7111</td> <td align="center">886</td> <td align="center">576</td> <td aligh="center"><a href="https://huggingface.co/datasets/tner/tweetner7">Link</a></td> </tr> <tr> <td align="center">WikiDiverse<sup>*<sup></td> <td align="center">News</td> <td align="center">13</td> <td align="center">6312</td> <td align="center">755</td> <td align="center">757</td> <td aligh="center"><a href="https://github.com/wangxw5/wikidiverse?tab=readme-ov-file#get-the-data">Link</a></td> </tr> <tr> <td align="center">WNUT2017</td> <td align="center">Social Media</td> <td align="center">6</td> <td align="center">3394</td> <td align="center">1009</td> <td align="center">1287</td> <td aligh="center"><a href="https://tianchi.aliyun.com/dataset/144349">Link</a></td> </tr> <tr> <td align="center" rowspan="11"><strong>RE</strong></td> <td align="center">ACE05</td> <td align="center">News</td> <td align="center">7</td> <td align="center">10051</td> <td align="center">2420</td> <td align="center">2050</td> <td align="center"><a href="https://catalog.ldc.upenn.edu/LDC2006T06">Link</a></td> </tr> <tr> <td align="center">ADE</td> <td align="center">Biomedical</td> <td align="center">1</td> <td align="center">3417</td> <td align="center">427</td> <td align="center">428</td> <td align="center"><a href="http://lavis.cs.hs-rm.de/storage/spert/public/datasets/ade/">Link</a></td> </tr> <tr> <td align="center">CoNLL04</td> <td align="center">News</td> <td align="center">5</td> <td align="center">922</td> <td align="center">231</td> <td align="center">288</td> <td align="center"><a href="http://lavis.cs.hs-rm.de/storage/spert/public/datasets/conll04/">Link</a></td> </tr> <tr> <td align="center">DocRED</td> <td align="center">Wikipedia</td> <td align="center">96</td> <td align="center">3008</td> <td align="center">300</td> <td align="center">700</td> <td align="center"><a href="https://github.com/thunlp/DocRED">Link</a></td> </tr> <tr> <td align="center">MNRE<sup>*<sup></td> <td align="center">Social Media</td> <td align="center">23</td> <td align="center">12247</td> <td align="center">1624</td> <td align="center">1614</td> <td align="center"><a href="https://github.com/thecharm/MNRE">Link</a></td> </tr> <tr> <td align="center">NYT</td> <td align="center">News</td> <td align="center">24</td> <td align="center">56196</td> <td align="center">5000</td> <td align="center">5000</td> <td align="center"><a href="https://github.com/thunlp/OpenNRE/blob/master/benchmark/download_nyt10.sh">Link</a></td> </tr> <tr> <td align="center">Re-TACRED</td> <td align="center">News</td> <td align="center">40</td> <td align="center">58465</td> <td align="center">19584</td> <td align="center">13418</td> <td align="center"><a href="https://github.com/gstoica27/Re-TACRED">Link</a></td> </tr> <tr> <td align="center">SciERC</td> <td align="center">Scientific</td> <td align="center">7</td> <td align="center">1366</td> <td align="center">187</td> <td align="center">397</td> <td align="center"><a href="http://lavis.cs.hs-rm.de/storage/spert/public/datasets/scierc/">Link</a></td> </tr> <tr> <td align="center">SemEval2010</td> <td align="center">General</td> <td align="center">19</td> <td align="center">6507</td> <td align="center">1493</td> <td align="center">2717</td> <td align="center"><a href="https://github.com/thunlp/OpenNRE/blob/master/benchmark/download_semeval.sh">Link</a></td> </tr> <tr> <td align="center">TACRED</td> <td align="center">News</td> <td align="center">42</td> <td align="center">68124</td> <td align="center">22631</td> <td align="center">15509</td> <td align="center"><a href="https://nlp.stanford.edu/projects/tacred/">Link</a></td> </tr> <tr> <td align="center">TACREV</td> <td align="center">News</td> <td align="center">42</td> <td align="center">68124</td> <td align="center">22631</td> <td align="center">15509</td> <td align="center"><a href="https://github.com/DFKI-NLP/tacrev">Link</a></td> </tr> <tr> <td align="center" rowspan="7"><strong>EE</strong></td> <td align="center">ACE05</td> <td align="center">News</td> <td align="center">33/22</td> <td align="center">17172</td> <td align="center">923</td> <td align="center">832</td> <td align="center"><a href="https://catalog.ldc.upenn.edu/LDC2006T06">Link</a></td> </tr> <tr> <td align="center">CASIE</td> <td align="center">Cybersecurity</td> <td align="center">5/26</td> <td align="center">11189</td> <td align="center">1778</td> <td align="center">3208</td> <td align="center"><a href="https://github.com/Ebiquity/CASIE">Link</a></td> </tr> <tr> <td align="center">GENIA11</td> <td align="center">Biomedical</td> <td align="center">9/11</td> <td align="center">8730</td> <td align="center">1091</td> <td align="center">1092</td> <td align="center"><a href="https://bionlp-st.dbcls.jp/GE/2011/eval-test/">Link</a></td> </tr> <tr> <td align="center">GENIA13</td> <td align="center">Biomedical</td> <td align="center">13/7</td> <td align="center">4000</td> <td align="center">500</td> <td align="center">500</td> <td align="center"><a href="https://bionlp-st.dbcls.jp/GE/2013/eval-test/">Link</a></td> </tr> <tr> <td align="center">PHEE</td> <td align="center">Biomedical</td> <td align="center">2/16</td> <td align="center">2898</td> <td align="center">961</td> <td align="center">968</td> <td align="center"><a href="https://github.com/ZhaoyueSun/PHEE">Link</a></td> </tr> <tr> <td align="center">RAMS</td> <td align="center">News</td> <td align="center">139/65</td> <td align="center">7329</td> <td align="center">924</td> <td align="center">871</td> <td align="center"><a href="https://nlp.jhu.edu/rams/">Link</a></td> </tr> <tr> <td align="center">WikiEvents</td> <td align="center">Wikipedia</td> <td align="center">50/59</td> <td align="center">5262</td> <td align="center">378</td> <td align="center">492</td> <td align="center"><a href="https://github.com/raspberryice/gen-arg">Link</a></td> </tr> </tbody> </table>

Star History

Star History Chart