Home

Awesome

<div align=center> <img src="img/Medical_LLM_logo.png" width="180px"> </div> <h2 align="center"> A Practical Guide for Medical Large Language Models </a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update.</h5> <h5 align="center">

Awesome arxiv Hits twitter TechBeat YouTube GitHub Repo stars

</h5>

This is an actively updated list of practical guide resources for Medical Large Language Models (Medical LLMs). It's based on our survey paper:

A Survey of Large Language Models in Medicine: Progress, Application, and Challenge

Hongjian Zhou<sup>1,*</sup>, Fenglin Liu<sup>1,*</sup>, Boyang Gu<sup>2,*</sup>, Xinyu Zou<sup>3,*</sup>, Jinfa Huang<sup>4,*</sup>, Jinge Wu<sup>5</sup>, Yiru Li<sup>6</sup>, Sam S. Chen<sup>7</sup>, Peilin Zhou<sup>8</sup>, Junling Liu<sup>9</sup>, Yining Hua<sup>10</sup>, Chengfeng Mao<sup>11</sup>, Chenyu You<sup>12</sup>, Xian Wu<sup>13</sup>, Yefeng Zheng<sup>13</sup>, Lei Clifton<sup>1</sup>, Zheng Li<sup>14,†</sup>, Jiebo Luo<sup>4,†</sup>, David A. Clifton<sup>1,†</sup>. (*Core Contributors, †Corresponding Authors)

<sup>1</sup>University of Oxford, <sup>2</sup>Imperial College London, <sup>3</sup>University of Waterloo, <sup>4</sup>University of Rochester, <sup>5</sup>University College London, <sup>6</sup>Western University, <sup>7</sup>University of Georgia, <sup>8</sup>Hong Kong University of Science and Technology (Guangzhou), <sup>9</sup>Alibaba, <sup>10</sup>Harvard T.H. Chan School of Public Health, <sup>11</sup>MIT, <sup>12</sup>Yale University, <sup>13</sup>Tencent, <sup>14</sup>Amazon

📣 Update News

[2024-10-11] 🎉🎉🎉 Big News! Our repository has reached 1,000 🌟. Thank you to everyone who contributed.

[2024-07-10] We have updated our Version 6. Thank you all for your support!

[2024-05-05] We have updated our Version 5. Please check it out!

[2024-03-03] We have updated our Version 4. Please check it out!

[2024-02-04] 🍻🍻🍻 Cheers! Happy Chinese New Year! We have updated our Version 3. Please check it out!

[2023-12-11] We have updated our survey Version 2. Please check it out!

[2023-11-09] We have released the repository and survey Version 1.

⚡ Contributing

If you want to add your work or model to this list, please do not hesitate to email fenglin.liu@eng.ox.ac.uk and jhuang90@ur.rochester.edu or pull requests. Markdown format:

* [**Name of Conference or Journal + Year**] Paper Name. [[paper]](link) [[code]](link)

🤔 What are the Goals of the Medical LLM?

Goal 1: Surpassing Human-Level Expertise.

<div align=center> <img src="img/Medical_LLM_evolution.png" width="800px"> </div>

Goal 2: Emergent Properties of Medical LLM with the Model Size Scaling Up.

<div align=center> <img src="img/Medical_LLM_parameter_new.png" width="800px"> </div>

🤗 What is This Survey About?

This survey provides a comprehensive overview of the principles, applications, and challenges faced by LLMs in medicine. We address the following specific questions:

  1. How should medical LLMs be built?
  2. What are the measures for the downstream performance of medical LLMs?
  3. How should medical LLMs be utilized in real-world clinical practice?
  4. What challenges arise from the use of medical LLMs?
  5. How should we better construct and utilize medical LLMs?

This survey aims to provide insights into the opportunities and challenges of LLMs in medicine, and serve as a practical resource for constructing effective medical LLMs.

<div align=center> <img src="img/Medical_LLM_Introduction.png" width="800px"> </div>

Table of Contents

🔥 Practical Guide for Building Pipeline

<div align=center> <img src="img/Medical_LLMs_tree.png" width="1000px"> </div>

Pre-training from Scratch

Fine-tuning General LLMs

Prompting General LLMs

📊 Practical Guide for Medical Data

Clinical Knowledge Bases

Pre-training Data

Fine-tuning Data

🗂️ Downstream Biomedical Tasks

<div align=center> <img src="img/Medical_LLM_evaluation.png" width="800px"> </div>

Huggingface Leaderboard

Generative Tasks

Text Summarization

Text Simplification

Question Answering

Discriminative Tasks

Entity Extraction

Relation Extraction

Text Classification

Natural Language Inference

Semantic Textual Similarity

Information Retrieval

✨ Practical Guide for Clinical Applications

<div align=center> <img src="img/Medical_LLM_Application.png" width="800px"> </div>

Retrieval-augmented Generation

Medical Decision-Making

Clinical Coding

Clinical Report Generation

Medical Education

Medical Robotics

Medical Language Translation

Mental Health Support

⚔️ Practical Guide for Challenges

<div align=center> <img src="img/Medical_LLM_Challenge.png" width="800px"> </div>

Hallucination

Lack of Evaluation Benchmarks and Metrics

Domain Data Limitations

New Knowledge Adaptation

Behavior Alignment

Ethical, Legal, and Safety Concerns

🚀 Practical Guide for Future Directions

<div align=center> <img src="img/Medical_LLM_Future.png" width="800px"> </div>

Introduction of New Benchmarks

Interdisciplinary Collaborations

Multi-modal LLM

<!-- * Holistic Evaluation of GPT-4V for Biomedical Imaging. 2023. [paper](https://arxiv.org/pdf/2312.05256v1.pdf) -->

Medical Agents

👍 Acknowledgement

📑 Citation

Please consider citing 📑 our papers if our repository is helpful to your work, thanks sincerely!

@article{zhou2023survey,
  title={A Survey of Large Language Models in Medicine: Progress, Application, and Challenge},
  author={Hongjian Zhou, Fenglin Liu, Boyang Gu, Xinyu Zou, Jinfa Huang, Jinge Wu, Yiru Li, Sam S. Chen, Peilin Zhou, Junling Liu, Yining Hua, Chengfeng Mao, Xian Wu, Yefeng Zheng, Lei Clifton, Zheng Li, Jiebo Luo, David A. Clifton},
  journal={arXiv preprint arXiv:2311.05112},
  year={2023}
}

♥️ Contributors

<a href="https://github.com/AI-in-Health/MedLLMsPracticalGuide/graphs/contributors"> <img src="https://contrib.rocks/image?repo=AI-in-Health/MedLLMsPracticalGuide" /> </a>