Home

Awesome

EfficientDNNs

A collection of recent methods on DNN compression and acceleration. There are mainly 5 kinds of methods for efficient DNNs:

Note, this repo is more about pruning (with lottery ticket hypothesis or LTH as a sub-topic), KD, and quantization. For other topics like NAS, see more comprehensive collections (## Related Repos and Websites) at the end of this file. Welcome to send a pull request if you'd like to add any pertinent papers.

Other repos:

About abbreviation: In the list below, o for oral, s for spotlight, b for best paper, w for workshop.

Surveys

Papers [Pruning and Quantization]

1980s,1990s

2000s

2011

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023


Papers [Actual Acceleration via Sparsity]


Papers [Lottery Ticket Hypothesis (LTH)]

For LTH and other Pruning at Initialization papers, please refer to Awesome-Pruning-at-Initialization.


Papers [Bayesian Compression]

Papers [Knowledge Distillation (KD)]

Before 2014

2014

2016

2017

2018

2019

2020

2021

2022

Papers [AutoML (NAS etc.)]

Papers [Interpretability]

Workshops

Books & Courses

Lightweight DNN Engines/APIs

Related Repos and Websites