Awesome
Anakin2.0
Welcome to the Anakin GitHub.
Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineers and is a large-scale application of industrial products.
Please refer to our release announcement to track the latest feature of Anakin.
Features
-
Flexibility
Anakin is a cross-platform, high-performance inference engine, supports a wide range of neural network architectures and different hardware platforms. It is easy to run Anakin on GPU / x86 / ARM platform.
Anakin has integrated with NVIDIA TensorRT and open source this part of integrated API to provide services, developers can call the API directly or modify it as needed, which will be more flexible for development requirements.
-
High performance
In order to give full play to the performance of hardware, we optimized the forward prediction at different levels.
-
Automatic graph fusion. The goal of all performance optimizations under a given algorithm is to make the ALU as busy as possible. Operator fusion can effectively reduce memory access and keep the ALU busy.
-
Memory reuse. Forward prediction is a one-way calculation. We reuse the memory between the input and output of different operators, thus reducing the overall memory overhead.
-
Assembly level optimization. Saber is a underlying DNN library for Anakin, which is deeply optimized at assembly level.
-
NV GPU Benchmark
Machine And Enviornment
CPU:
Intel(R) Xeon(R) CPU 5117 @ 2.0GHz
GPU:Tesla P4
cuda:CUDA8
cuDNN:v7
- Time:warmup 10,running 1000 times to get average time
- Latency (
ms
) and Memory(MB) of different batch
The counterpart of
Anakin
is the acknowledged high performance inference engineNVIDIA TensorRT 5
, The models which TensorRT 5 doesn't support we use the custom plugins to support.
<span id = '1'> VGG16 </span>
Batch_Size | RT latency FP32(ms) | Anakin2 Latency FP32 (ms) | RT Memory (MB) | Anakin2 Memory (MB) |
---|---|---|---|---|
1 | 8.52532 | 8.2387 | 1090.89 | 702 |
2 | 14.1209 | 13.8772 | 1056.02 | 768.76 |
4 | 24.4529 | 24.3391 | 1002.17 | 840.54 |
8 | 46.7956 | 46.3309 | 1098.98 | 935.61 |
<span id = '2'> Resnet50 </span>
Batch_Size | RT latency FP32(ms) | Anakin2 Latency FP32 (ms) | RT Latency INT8 (ms) | Anakin2 Latency INT8 (ms) | RT Memory FP32(MB) | Anakin2 Memory FP32(MB) |
---|---|---|---|---|---|---|
1 | 4.6447 | 3.0863 | 1.78892 | 1.61537 | 1134.88 | 311.25 |
2 | 6.69187 | 5.13995 | 2.71136 | 2.70022 | 1108.86 | 382 |
4 | 11.1943 | 9.20513 | 4.16771 | 4.77145 | 885.96 | 406.86 |
8 | 19.8769 | 17.1976 | 6.2798 | 8.68197 | 813.84 | 532.61 |
<span id = '3'> Resnet101 </span>
Batch_Size | RT latency (ms) | Anakin2 Latency (ms) | RT Latency INT8 (ms) | Anakin2 Latency INT8 (ms) | RT Memory (MB) | Anakin2 Memory (MB) |
---|---|---|---|---|---|---|
1 | 9.98695 | 5.44947 | 2.81031 | 2.74399 | 1159.16 | 500.5 |
2 | 17.3489 | 8.85699 | 4.8641 | 4.69473 | 1158.73 | 492 |
4 | 20.6198 | 16.8214 | 7.11608 | 8.45324 | 1021.68 | 541.08 |
8 | 31.9653 | 33.5015 | 11.2403 | 15.4336 | 914.49 | 611.54 |
X86 CPU Benchmark
Machine And Enviornment
CPU:
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
with HT, for FP32 test
CPU:Intel(R) Xeon(R) Gold 6271 CPU @ 2.60GHz
with HT, for INT8 test
System:CentOS 6.3
withGCC 4.8.2
, for benchmark between Anakin and Intel Caffe
- All test enable
8 thread parallel
- Time:warmup 10,running 200 times to get average time
The counterpart of
Anakin
isIntel Cafe
(1.1.6) with mklml.
Net_Name | Batch_Size | Anakin2 Latency(2650v4) fp32 (ms) | caffe Latency(2650v4) fp32 (ms) | Anakin2 Latency int8(6271) (ms) |
---|---|---|---|---|
resnet50 | 1 | 20.6201 | 24.1369 | 3.20866 |
resnet50 | 2 | 39.2286 | 43.1096 | 5.44311 |
resnet50 | 4 | 77.1392 | 81.8814 | 9.93424 |
resnet50 | 8 | 152.941 | 158.321 | 19.5618 |
vgg16 | 1 | 55.6132 | 70.532 | 15.3181 |
vgg16 | 2 | 96.5034 | 131.451 | 22.5082 |
vgg16 | 4 | 180.479 | 247.926 | 37.2974 |
vgg16 | 8 | 346.619 | 485.44 | 67.6682 |
mobilenetv1 | 1 | 3.98104 | 5.42775 | 0.926546 |
mobilenetv1 | 2 | 7.27079 | 9.16058 | 1.35007 |
mobilenetv1 | 4 | 14.4029 | 16.2505 | 2.37271 |
mobilenetv1 | 8 | 29.1651 | 29.8381 | 3.75992 |
vgg16_ssd | 1 | 125.948 | 143.412 | |
vgg16_ssd | 2 | 247.242 | 266.22 | |
vgg16_ssd | 4 | 488.377 | 510.978 | |
vgg16_ssd | 8 | 972.762 | 995.407 | |
mobilenetv2 | 1 | 3.78504 | 23.0066 | |
mobilenetv2 | 2 | 7.24622 | 65.9301 | |
mobilenetv2 | 4 | 13.7638 | 85.3893 | |
mobilenetv2 | 8 | 28.4093 | 131.669 |
ARM CPU Benchmark
Machine And Enviornment
CPU:
Kirin 980
CPU:Snapdragon 652
CPU:Snapdragon 855
CPU:RK3399
- Compile circumstance: Android ndk cross compile,gcc 4.9,enable neon
- Time:warmup 10,running 10 times to get average time
- Note: 1、shufflenetv2 int8 model add swish operator
The counterpart of
Anakin
isncnn
(20190320). This benchmark we test ARMv7 ARMv8 splitly
ARMv8 TEST
- ABI: arm64-v8a
- Latency (
ms
) ofone batch
Kirin 980 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | |
mobilenet_v1 | 34.172 | 19.369 | 12.723 | 37.588 | 20.692 | 13.280 | 45.420 | 24.220 | 16.730 | 50.560 | 27.820 | 20.010 |
mobilenet_v2 | 30.489 | 17.784 | 12.327 | 29.581 | 17.208 | 15.307 | 30.390 | 17.310 | 12.900 | |||
mobilenet_ssd | 71.609 | 37.477 | 28.952 | 88.220 | 70.070 | 66.430 | 103.700 | 85.160 | 85.320 | |||
resnet50 | 255.748 | 137.842 | 104.628 | 1299.480 | 695.830 | 498.010 | 243.360 | 131.100 | 89.800 | |||
shufflenetv1 | 11.544 | 8.931 | 7.027 | 12.810 | 9.390 | 8.030 | ||||||
shufflenetv2 | 11.687 | 7.899 | 5.321 | 20.402 | 11.529 | 9.061 | ||||||
squeezenet | 28.580 | 16.638 | 14.435 | |||||||||
googlenet | 93.917 | 52.742 | 40.301 | 130.875 | 72.522 | 54.204 |
Snapdragon 855 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | |
mobilenet_v1 | 32.019 | 19.024 | 10.491 | 34.363 | 20.292 | 10.382 | 37.110 | 22.310 | 13.520 | 47.430 | 28.350 | 15.830 |
mobilenet_v2 | 28.533 | 17.455 | 10.433 | 24.487 | 15.182 | 9.133 | 25.060 | 15.970 | 11.250 | |||
mobilenet_ssd | 66.454 | 41.397 | 23.639 | 101.560 | 69.380 | 43.930 | 136.420 | 91.010 | 47.490 | |||
resnet50 | 201.362 | 132.133 | 78.300 | 1141.290 | 724.090 | 385.990 | 229.020 | 138.450 | 82.060 | |||
shufflenetv1 | 10.153 | 7.101 | 5.327 | 11.610 | 8.020 | 5.870 | ||||||
shufflenetv2 | 10.868 | 6.713 | 4.526 | 17.306 | 10.987 | 6.788 | ||||||
squeezenet | 25.880 | 16.134 | 9.697 | |||||||||
googlenet | 85.774 | 54.518 | 34.025 | 118.120 | 73.686 | 41.865 |
Snapdragon 652 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | |
mobilenet_v1 | 109.994 | 54.937 | 33.174 | 83.887 | 43.639 | 24.665 | 123.320 | 122.670 | 65.100 | 128.800 | 154.370 | 125.570 |
mobilenet_v2 | 80.712 | 46.314 | 30.874 | 69.340 | 43.590 | 31.864 | 89.920 | 90.900 | 55.320 | |||
mobilenet_ssd | 246.459 | 121.684 | 134.019 | 248.190 | 138.170 | 142.350 | 247.020 | 145.080 | 211.000 | |||
resnet50 | 673.285 | 346.287 | 378.065 | 880.940 | 514.190 | 533.760 | 313.630 | |||||
shufflenetv1 | 34.948 | 26.635 | 21.571 | 39.950 | 25.520 | 20.180 | ||||||
shufflenetv2 | 35.530 | 21.440 | 16.434 | 49.498 | 29.116 | 19.346 | ||||||
squeezenet | 87.037 | 47.192 | 28.663 | |||||||||
googlenet | 268.023 | 148.533 | 95.624 | 236.492 | 131.510 | 81.561 |
RK3399 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | |
mobilenet_v1 | 111.317 | 60.008 | 87.201 | 45.693 | 149.270 | 91.200 | 142.790 | 86.140 | ||||
mobilenet_v2 | 105.767 | 60.899 | 79.065 | 53.914 | 118.530 | 86.900 | ||||||
mobilenet_ssd | 232.923 | 128.337 | 268.900 | 157.860 | 256.560 | 149.730 | ||||||
resnet50 | 671.800 | 369.386 | 1029.300 | 571.230 | 569.250 | 344.830 | ||||||
shufflenetv1 | 38.761 | 25.971 | ||||||||||
shufflenetv2 | 36.220 | 22.095 | 51.879 | 30.351 | ||||||||
squeezenet | 98.489 | 54.863 | ||||||||||
googlenet | 274.166 | 159.429 | 235.085 | 133.044 |
ARMv7 TEST
- ABI: armveabi-v7a with neon
- Latency (
ms
) ofone batch
Kirin 980 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | |
mobilenet_v1 | 39.051 | 19.813 | 14.184 | 39.026 | 22.048 | 14.250 | 50.240 | 26.850 | 20.010 | 92.900 | 49.420 | 37.160 |
mobilenet_v2 | 36.052 | 19.550 | 14.507 | 32.656 | 19.641 | 15.735 | 35.890 | 20.730 | 18.550 | |||
mobilenet_ssd | 83.474 | 44.530 | 33.116 | 99.960 | 53.160 | 84.360 | 180.000 | 91.380 | 68.140 | |||
resnet50 | 291.478 | 158.954 | 129.484 | 1412.37 | 766.62 | 560.760 | 355.010 | 189.18 | 133.410 | |||
shufflenetv1 | 11.909 | 9.761 | 7.441 | 16.030 | 10.660 | 8.120 | ||||||
shufflenetv2 | 11.755 | 7.983 | 6.289 | 21.968 | 14.111 | 9.888 | ||||||
squeezenet | 30.148 | 20.908 | 17.084 | |||||||||
googlenet | 108.210 | 65.798 | 58.630 | 140.886 | 79.910 | 60.693 |
Snapdragon 855 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | |
mobilenet_v1 | 34.015 | 20.064 | 11.410 | 42.222 | 21.532 | 11.746 | 41.150 | 24.870 | 18.420 | 79.180 | 48.470 | 24.530 |
mobilenet_v2 | 30.742 | 18.507 | 11.354 | 24.628 | 15.133 | 9.079 | 30.060 | 19.220 | 15.520 | |||
mobilenet_ssd | 69.749 | 44.010 | 26.000 | 85.030 | 62.770 | 48.940 | 154.600 | 138.700 | 82.140 | |||
resnet50 | 218.581 | 146.509 | 92.899 | 1380.340 | 996.410 | 540.660 | 324.720 | 261.920 | 126.270 | |||
shufflenetv1 | 11.032 | 7.430 | 5.369 | 13.390 | 9.270 | 6.360 | ||||||
shufflenetv2 | 11.372 | 7.120 | 4.728 | 19.393 | 12.278 | 7.719 | ||||||
squeezenet | 27.860 | 17.538 | 10.729 | |||||||||
googlenet | 100.719 | 69.509 | 49.021 | 127.982 | 83.369 | 50.275 |
Snapdragon 652 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | 1 thread | 2 thread | 4 thread | |
mobilenet_v1 | 121.982 | 63.004 | 37.325 | 86.672 | 45.728 | 26.354 | 130.740 | 140.850 | 81.810 | 184.630 | 192.730 | 144.740 |
mobilenet_v2 | 89.113 | 50.609 | 35.291 | 72.679 | 45.888 | 33.887 | 94.520 | 101.380 | 65.570 | |||
mobilenet_ssd | 236.466 | 132.293 | 86.335 | 270.630 | 295.520 | 174.280 | 350.640 | 286.420 | 243.850 | |||
resnet50 | 751.528 | 405.433 | 255.699 | 2762.890 | 1447.070 | 883.730 | 664.180 | 369.020 | ||||
shufflenetv1 | 36.883 | 23.718 | 15.144 | 53.660 | 33.450 | 23.330 | ||||||
shufflenetv2 | 36.933 | 26.353 | 20.507 | 53.243 | 31.083 | 21.550 | ||||||
squeezenet | 92.748 | 51.936 | 33.027 | |||||||||
googlenet | 296.092 | 179.542 | 125.509 | 242.505 | 140.083 | 89.646 |
RK3399 | Anakin fp32 | Anakin int8 | NCNN fp32 | NCNN int8 | ||||
---|---|---|---|---|---|---|---|---|
1 thread | 2 thread | 1 thread | 2 thread | 1 thread | 2 thread | 1 thread | 2 thread | |
mobilenet_v1 | 116.981 | 65.033 | 87.768 | 47.617 | 155.830 | 98.520 | 201.800 | 116.440 |
mobilenet_v2 | 118.229 | 70.567 | 83.790 | 55.413 | 126.530 | 90.930 | ||
mobilenet_ssd | 237.196 | 134.508 | 292.130 | 183.650 | 361.570 | 200.370 | ||
resnet50 | 725.582 | 413.995 | 2883.120 | 1632.800 | 702.660 | 404.970 | ||
shufflenetv1 | 41.094 | 27.353 | ||||||
shufflenetv2 | 37.660 | 23.489 | 53.558 | 32.122 | ||||
squeezenet | 104.519 | 59.402 | ||||||
googlenet | 305.304 | 190.897 | 244.855 | 142.493 |
Documentation
All you need is in Doc Index
We also provide English and Chinese tutorial documentation.
-
User guide
You can get the working principle of the project, C++ interface description and code examples from here. You can also learn about the model converter here.
-
Developer guide
You might want to know more details of Anakin and make it better. Please refer to how to add custom devices and how to add custom device operators.
-
We appreciate your contributions!
Ask Questions
You are welcome to submit questions and bug reports as Github Issues.
Copyright and License
Anakin is provided under the Apache-2.0 license.
Acknowledgement
Anakin refers to the following projects: